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Abstract— The central idea of principal component analysis 

(PCA) is to reduce the dimensionality of a data set consisting of a 

large number of interrelated variables, while retaining as much 

as possible of the variation present in the data set. This is 

achieved by transforming to a new set of variables, the principal 

components (PCs), which are uncorrelated, and which are 

ordered so that the first few retain most of the variation 

presented in all of the original variables. 
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I.  INTRODUCTION 

Principal Components Analysis (PCA) is a traditional 
multivariate statistical method commonly used to reduce the 
number of predictive variables. PCA looks for a few linear 
combinations of the variables that can be used to summarize 
the data without losing too much information in the process. 
This method of dimension reduction is also known as 
“parsimonious summarization”. 

Principal components depend solely on the covariance matrix 

  (or the correlation matrix   ) of   

II. Population PRINCIPAL Components 

Let the random vector  T 
= [ 1, 2,…, p] have the 

covariance matrix ∑ with eigenvalues  1 ≥  2 ≥ ⋯ ≥  p  ≥ 0. 

Consider the linear combinations : 

 

 

 

 

Where 

            

 

The principal components are those uncorrelated linear 

combinations  whose variances are as large as 

possible. 

First principal component is the linear combination  that 

maximizes  subject to  

Second principal component is the linear combination  

that maximizes  subject to  and 

 

At the i
th
 step, the i

th
 principal component is the linear 

combination  that maximizes  subject 

to  and 

 

Theorem 2.1.1: 

 Let  be the covariance matrix associated with the random 

vector  . Let have the 

eigenvalue-eigenvector pairs  
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 where  Then the ith 

principal component is given by: 

 

where 

 

 

 

III. Methods for Discarding Components 

When carrying out a principal component analysis , the 
researcher must decide how many components to use to 
represent the data; the other components will be discarded. 
Fava and Velicer (1992) studied the effects of using too many 
components. Note that before discarding components, we may 
wish to examine the "smallest" one for the information it 
carries. 

A. Percent of Variance 

Define abbreviations and acronyms the first time they are 
used in the text, even after they have been defined in the 
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, 
and rms do not have to be defined. Do not use abbreviations in 
the title or heads unless they are unavoidable. 

B. Average Eigenvalue  

We could retain those components whose eigenvalues are 

greater than the average eigenvalue,  


p

j

j

p1


 which is 

also the average variance of the variables, since 

 str
j j    For a correlation matrix, 1 . 

The average eigenvalue method often works well in 
practice .When this method errors, it is likely to be on the side 
of retaining too many components. Cattell and Jaspers 

 Browne  and Linn  have studied 

the performance of this criterion in situations where the true 
dimensionality is known. They found the method to be fairly 

accurate when the number of variables is  and the 

variables are rather highly correlated. For larger numbers of 
variables that are not as highly correlated, the technique tends 
to overestimate the number of components. 

 

C. Scree Graph  

We could plot the eigenvalues in an attempt to find a visual 
break between the "large" eigenvalues and the "small" 
eigenvalues. This plot is called a scree graph. The term scree, 
suggested by Cattell (1966), refers to the geological term for 
the debris at the bottom of a rocky cliff.  

An ideal scree graph is shown in Figure 2.4, in which it is 
easy to distinguish the large eigenvalues from the small ones. 

The first two eigenvalues form a steep curve; the remaining 
eigenvalues exhibit a linear trend with small slope. In such a 
case, it is clear that we should delete the components 
corresponding to the small eigenvalues on the straight line. In 
practice, this ideal pattern may not appear, and this approach 
may not be conclusive. 

The  accuracy of the scree method in choosing the correct 
number of components has been investigated in several studies. 
Cattell and Jaspers (1967) found it to give the correct number 
in 6 out of 8 cases. Linn (1968) found it to be correct in 7 of 10 
cases, and Tucker et al. (1969) found it to be accurate in 12 of 
18 cases. Hakstian et al. (1982), comparing the average 
eigenvalue method and the scree method, found both to be 
accurate when n > 250 and the variables are at least 
moderately intercorrelated. When the correlations were 
smaller so that more components are needed, both methods 
were less accurate, the average eigenvalue method performing 
slightly better than the scree method. 

 

 

Figure 1 

IV. PRINCIPAL COMPONENT REGRESSION 

Recall that a multiple linear regression model with  

predictor variables and a response variable  can be written as 

 

Where y is the value of response (dependent) 
variable,  are  predictor (independent) 
variables,  are parameters (regression 
coefficients) and  is the random error term, with 
mean 0 and variance   

 

One of the problems in a multiple linear regression is 
multicollinearity that occurs when one or more of the 
independent variables are highly correlated with one or more of 
the other independent variables.  

Multicollinearity effects on the regression analysis .Such 
that the regression coefficients will be unstable from sample to 
sample because the standard errors of the regression 
coefficients are very large. which means that the coefficients 
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can't be estimated with great accuracy as well as the 
interpretation of the results. And the multicollinearity leads to 
high variance of coefficients and these reduce the accuracy of 
estimation.  

One way of solving the problem of multicollinearity is 

principal component regression, in which  is regressed on the 

principal components of the  . The standard errors of the 

regression coefficients on principal component regression 
become small. 

 

The estimator for  is given by 

                          

and consider the covariance matrix of  is  

                        

and the total variance of is equal 

,  

where  is the ith eigenvalue of . If one or more 

of the   is small, the total variance of the  will be 

large. 

A small eigenvalue of   induces multicolinearity among 

the  

EXAMPLE 

To illustrate principal component regression we 
use a data set given by Longer  that has high 
multicolinearity and has often been used to test 
regression software for numerical accuracy. This 
data set has been used to illustrate principal 
component regression by Hill, Fompy, and Johnson 

  

The variables are:  is the number of federal 
government employees,  is the GNP price deflator, 

 is the gross national product,  is the 
unemployed,  is the size of armed forces,  is the 
population  years and over,  is the year. The 
data were collected for  consecutive years. 

 

 

The presence of  multicolinearity is indicated by several high 

correlations.  

In Table 3.2, we compare the principal component regression 

coefficients and the least square regression coefficients. 

Table 3.2   Comparison of  least squares and principal 

component regression 

Standardized                 Least Squares                           

principal component 

Variable           Coefficient     standard error     

Coefficient              standard error         

 

36.61 9.04 29.02 0.01 

 

1063.98 119.23 25.95 0.03 

 

118.18 2.24 -32.45 0.20 

 

141.23 0.24 109.14 0.14 

 

-179.94 26.61 16.87 0.02 

 

-936.77 50.6 23.38 0.01 
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