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Abstract—Bioinformatics data consists of a huge amount of 

information due to the large number of sequences, the very high 

sequences lengths and the daily new additions. This data need to 

be efficiently accessed for many needs. What makes one DNA 

data item distinct from another is its DNA sequence. DNA 

sequence consists of a combination of four characters which are 

A, C, G, T and have different lengths. Use a suitable 

representation of DNA sequences, and a suitable index structure 

to hold this representation at main memory will lead to have 

efficient processing by accessing the DNA sequences through 

indexing, and will reduce number of disk I/O accesses. I/O 

operations needed at the end, to avoid false hits, we reduce the 

number of candidate DNA sequences that need to be checked by 

pruning, so no need to search the whole database. We need to 

have a suitable index for searching DNA sequences efficiently, 

with suitable index size and searching time. The suitable selection 

of relation fields, where index is build upon has a big effect on 

index size and search time. Our experiments use the n-gram 

wavelet transformation upon one field and multi-fields index 

structure under the relational DBMS environment. Results show 

the need to consider index size and search time while using 

indexing carefully. Increasing window size decreases the amount 

of I/O reference. The use of a single field and multiple fields 

indexing is highly affected by window size value. Increasing 

window size value lead to better searching time with special type 

index using single filed indexing. While the search time is almost 

good and the same with most index types when using multiple 

field indexing. Storage space needed for RDMS indexing types 

are almost the same or greater than the actual data. 

Keywords-component; Large database, DNA sequence, index 

structure, sequence transformation, wavelet transformation, RDMS 

indexing. 

I.  INTRODUCTION (HEADING 1) 

Dealing with string of characters for large database is not 
easy in term of space and access time. Genome databases as 
NCBI have a huge size because of the daily addition of new 
data. Electronic books and biological data are good examples 
for large databases that include text and sequences. For genome 
database we can consider DNA sequence as a key value that 
distinguishes a sequence from another. 

Most of the work on genome database tries to find small 
size, efficient digit value that can represents DNA sequence.  
The problem of large number of I/O operation when accessing 
large size database is very costly in term of space and 
performance. Accessing the database need to be in minimum 
amount and at last stage after filtrations to reduce the number 
of records need to be accessed. 

We will consider the DNA sequence as the key value for 
genome database. Transforming this key to a digit is required 
to increase efficiency. Wavelet transformation technique [1] for 
DNA sequences is a suitable choice for our needs to do 
transformation as it gives us two advantages. 

Firstly, it saves sequence order while considering amount 
of overlapping carefully. Secondly, transforming characters to 
digits depends on frequencies of characters. 

Little amount of storage is needed as after finding first level 
wavelet coefficients[1], the second level can be calculated 
depending on the first level instead of  referring to the original 
sequence again. Our evaluation use substring searching for 
matching identical pattern by sliding window, this will reduce 
candidate list of sequences need to be checked, and at the last 
stage refer to database disk for validations after pruning, in 
other words, optimization for the number of I/O operations. 

Relational database provide different types of indexing like 
BTree, RTree[2], and hashing. Using these types of indexing to 
store Wavelet transformation will be discussed later. 

The rest of the paper is organized as follows: section 2 
reviews of related works. Section 3 presents data samples and 
methodology. Our results will be presented in section 4. 
Section 5 discusses the results. Conclusions will be discussed 
in section 6. 

II. RELATED WORK 

Different methods had been used to transform and index 
huge database systems. Dynamic programming [3, 4] has time 
and space complexity of O(nm) for two strings S and Q of 
lengths n and m, for database comparisons it will needs matrix 
of size nxm. Hence for long sequence and large database this 
method will be not practical in term of both space and time. It 
finds the difference between S and Q using a heavy 
computation method; the edit distance. 

The use of r Binary masks [3] of size n, M1, M2,…,Mr to 
move through S, of size m, by word size of w has complexity 
of O(nmr/w). For large value of m, this complexity will be very 
close to dynamic programming. 

Dictionary based indexing [3] for a database of sequences 
Si (i:1,2,…,n), creates index structure of size n corresponding 
to database size, predefining query lower bound length (L) to 
be equal to log(n) assumed. Query with larger length will be 
partitioned into smaller parts. All substrings of length L 
mapped to integers using hashing function and for queries 



larger than L split it into sub- queries, then search each sub-
query alone and combine the results. This method indexes all 
possible strings of a pre-specified length L.  Dictionary based 
index size is larger than the database. 

BLAST technique [5] used to find local similarity [6] and 
not global similarity. It is a string matching tool that has two 
phases: search all database sequences for a fixed substring 
length w (between 3 and 11) for exact matching (at i). And 
using a threshold 't', continue searching after the exact match at 
both direction, left and right, for distance more than 'i' and 
before 'i-w' till exceed 't'. It stores pointer for location 'i'. So, 
space needed is more than the database size. 

Suffix array [7] scans database strings using a window 
(window size w, overlapping amount ∆) and count repetition of 
all possible k-tuples. It stores result at vector of size σ^k (σ 
referred to alphabet chars A, C, G, T). Then it indexes those 
vectors at hierarchical binary tree and to compare new query 
with those vectors it uses Edit distance method. It runs 25 to 50 
times faster than BLAST. Disadvantage of this method is the 
allowing of false drops and index size increase linearly with k 
value. 

The Multi-Resolution index Structure (MRS) [5, 8] uses a 
sliding window of size w. MRS seeks the result set in different 
resolution levels. However, the authors only focus on the cost 
of MRS, and do not evaluate the filtrations efficiency of their 
proposed technique. 

SST [9, 10] scans the database by window w and map 
results to vector of size 4^w. Then hierarchical clusters, non 
overlapping, built using k-means algorithm, as any new query 
need to be processed against the database, using cluster mean 
and neglect clusters that are far away from  the  new  query.  
Disadvantages of SST are the complexity of calculations, and 
false clustering. 

The use of blocked inverted index [11] consists of index 
file (distinct terms) and a set of inverted lists with large-scale 
full-text system.  This method solves two problems:  The high 
storage overhead and considering posting list structure with 
differentiation between short and long lists. Through this work 
[11], blocked inverted index where used with skipping 
approach and propose the random access blocked inverted 
index (RABI) which enhance space and storage efficiency. 
This approach divide index into blocks and do compression to 
different parts of the block using encoding method. For 
compression it uses Binary interpolative coding (BIC). Access 
is done at both levels block level and inner block level. 

Build self-index [10] for data records using stuffing of 
delimiters, and give an upper bound, limited by a number of 
bits, of permanent space in worst case. Analysis’s done for 
space and time efficiency. Storage experiments compare the 
effects of using stuffing and performance examines three 
process construct, recover, and retrieval. Results show the 
effectiveness of FM-index in space and performance. This 
paper shows the advantages of using FM-index with the 
addition of adding delimiters. 

Handle structural mathematical text and mathematical 
operation [12] by index real-world scientific documents 
containing mathematical notation based on full text searching. 

Mathematical indexing address  the  following  issues,  
extraction  and  storing  of  mathematical  notation,  and  
ranking function. 

Full text search [13, 14] can be done by different ways. One 
way is by using N-gram which means we take N characters 
each time we do processing. N characters processed for 
searching, by start with 2-gram index then supplement with 
higher-gram index.  Frequently used search terms selected for 
the incremental index for that this approach have two 
functions, search engine and index creation engine. For long 
sequence number of AND operation is large which cause low 
performance for search, incremental indexing should solve this 
problem by carefully selecting search terms using search 
intensive approach. Experimental results show the 
effectiveness of incremental index even for further stored 
terms. This method build the incremental index upon subset of 
terms not for all terms to save space and provide efficiency for 
most search terms, while in our case we need to have index 
structure to be ready before searching. 

Building suffix array needs time O(n) and space O(n) for 
constant size text and Suffix tree needs O(nlogn) time and O(n) 
space. Suffix array and tree are suitable for pattern searching. 
Another method uses Compressed Suffix Array [15] and the 
output array of Burrows-Wheeler Transformation (BWT). In 
this approach a new algorithm has been developed using 
terminators at the end of each word. 

The use of signature of files for documents retrieval for 
large database systems allows the use of parallel hardware 
architecture [16, 17] for full text searching. Controlling false 
drop and using suitable hashing function with buffer and good 
storage overhead. The parallel process can be applied for 
process a document and between documents too. It provide a 
way for don’t care characters. 

An ontology kit for full text searching [18] focuses on 
finding words related to a certain concept (using relevancy 
ranking function) from a set of concepts. This kit consists of 
three layers: Full text layer for full text indexing (a Word-based 
index) and full text searching, Ontology layer for concept 
definition and ontology maintenance, and User layer for the 
programming issues. 

This kit made use of Apache Lucence and Jena 
development kits [http://lucene.apache.org/]. They work to get 
a relevancy ranking between documents that meet the query, 
which may be met by large number of documents. This kit is a 
sample of development kits used for evaluating index structure, 
this kit process depend on relevancy ranking rather than 
accurate matching. 

Most of mentioned works try to build lower bound (D) for 
the edit distance (ED). Edit Distance is time and space 
consuming (O(|n|*|n|) time & space) for the whole string. In 
general we can see that for three strings s1,s3 and s3, if 
D(s1,s2) > D(s1,s3), then ED(s1,s2) > ED(s1,s3) ). 

III. DATA AND METHODOLOGY 

Data used in our experiments shown in table I, we have 
picked different types (Species kingdom) including Archaea, 



Eukaryotic, and Bacteria. The Sample file contains DNA 
sequences only and is of different sizes as show in table I. 

TABLE I.  DATA SAMPLES USED BY OUR EXPERIMENTS 

Species 

kingdom 
File name Length Size 

Archaea 

 
 

 

 
 
 

NC_010315.fasta 
NC_008318.fasta 

EU881703.1.fasta 

NC_006389.fasta 
AY596291.1.fasta 

NC_013966.fasta 

NC_011766.fasta 
NS_000190.fasta 

1,051 
15,717 

28,643 

33,927 
33,446 

63,034 

1,365,223 
2,082,083 

2KB 
16KB 

29KB 

34KB 
34KB 

630KB 

1353KB 
2000KB 

Eukaryotic 
 

AP009202.1.fasta 

NC_009684.fasta 
NC_010093.fasta 

NC_013009.fasta 

16,240 

16,604 
153,819 

879,977 

17KB 

17KB 
153KB 

872KB 

Bacteria 

NC_011841.fasta 
NC_009471.fasta 

NC_013210.fasta 

NC_009926.fasta 
NC_013009.fasta 

30,652 
37,155 

191,799 

374,161 
879,977 

31KB 
37KB 

190KB 

371KB 
872KB 

 

A. Solution approach 

Our approach start by converting DNA sequence into eight 
columns vectors corresponding to the two wavelet 
transformation factors; A and B. Calculation like data center, 
four k-means, four vectors of size v with fixed size of eight-
columns instead of a sequence of size n which is variable and 
long is less in storage  size.  This transformation has been used 
for computing second coefficient wavelet transformation with 
six different windows ‘w’ of sizes 8, 16, 32, 64, 128, and 256 
chars Fig 1 shows the conversion steps. 

 

 

 

 

 

 

Figure 1.  Schema chart shows transformation, building index structure, 

preprocessing new query, and comparison 

After transformation we build an index which will be used 
for searching. Transforming data sequences to numerical 
representation (NR) will be accomplished. 

The aim of using different window sizes 'w' is to have 
different resolution levels of representation of a sequence; we 
aim, through using different window sizes,  to find the values 
of the window sizes where index structure remain stable, in 
other word we need the window size where space and search 
time is optimal. We assume the windows sizes 'w' to be 2x. By 
this assumption after finding the first order wavelet 
transformation by scanning the database by window w1, we 
can find the wavelet transformation for window values wi for 
i>1 depending on previous window value (w1) and no need to 
scan the database again. 

Part 1 algorithm: 

Input: 

Database of n sequences, n is a large value. 

Each sequence will be donated by Si, i Є [1, .., n] with length Li. 

Preprocessing: 

We have different window sizes (Wx), x =1, …,5 

Transform each Si into number format using Wavelet 

Transformation (WT), no need to 

reference database again as WT for W2 can be calculated from 

W1 as: (A1,B1),(A2,B2) -> (A1+A2,A1-A2) 

Initialize i=0 

For each Wx value from (Wx min,…, Wx max){ 

Move Wx over Si to produce Si[i-Wx’] Calculate WT for 

each Si[i-Wx’] 

Wx’ = Wx’ +1 and i++ 

Output: set of subsequences (SSi,j), j Є[1,…, 

m],m=Li/Wx, for each Si 

} 

Output: two values 

1. Transformed subsequence 

2. Sequence pointer 

Loop through all sequences (i){ 

For each pair value of (A,B) for a sequence(i) 

Remove duplicated (A,B) values 

} 

Store pair values at database table. 

Build index: 

Select index type from RDMS index types, build data structure 

upon this index type. 

Search by a query sequence: 

Search for a new sequence NQ of length LNQ. 

Convert NQ to WT to produce LNQ/Wx subsequences (NQi) 

after moving Wx window over NQ. 

Search the database for matching between NQi and SSi,j. 

B. Wavelet coefficents 

Each NR row corresponds to a DNA sequence, consists of 
8 columns vector. The columns is the wavelet second order 
coefficients (A,B), A is a 4 columns represent frequency of 
chars (A,C,G,T) second part B is the difference. Example 
bellow describes how wavelet works [3]: 

V(k,i)  =(A(k,i) ,B(k,i) ),   (1) 
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For a sequence u: [ACTC TAGC], consider frequency is 
done by the order (A, C, G, T) =(2, 3, 1, 2), divide u in two 
equal parts and recalculate frequency again then do subtraction, 
you get [1201, 1111] →(2 3 1 2 , 0 1 –1 0). 

 

The sequences will be represented using six window sizes, 
wi for i= {1, 2, 3, 4, 5, 6}, Each window size 'wi' representation 

 



will correspond to a final matrix for each sequence, this means 
we will have six matrices corresponds to wi value. 

Second step: uploading the data on a rational database 
system (RDMS). We used RDMS to get advantage of RDMS 
indexing systems like BTree, and Hash. Before uploading data 
to database tables, all repeated rows had been eliminated to 
make index size less since there is no need for the repeated data 
rows. Table III shows results of transformation and percentage 
of repeated data. 

Seven types of indexing have been used for evaluation. The 
types are index on primary key, normal index, primary index, 
full-text, unique, Hash, and BTree. Our experiments done using 
two PC’s, one with 1GB memory 2GHz, second one is 2 
x1GHz CPUs 4GB memory. RDMS used is MYSQL v5.0.1 
[19, 20] to store index in, webserver is Apache and language 
script used is PHP v5 for testing index reach, and Matlab 
version 7 used for wavelet transformation. 

C. Index types 

Full-text index allow search for natural language text, some 
features are: Excludes partial words and words less than x 
characters in length (3 or less), words that appear in more than 
half the rows, Hyphenated words are treated as two words, 
Rows are returned in order of relevance, descending, words in 
the stopword list (common words) are also excluded from the 
search results. Full-text had been used to achieve high 
performance indexing for XML [21]. 

"Normal" Indexes are the basic index type used by RDMS 
and require data field to be ordered, Normal Index have no 
restraints such as uniqueness. Unique Indexes are the same as 
"Normal" indexes with one difference: all values of the indexed 
column(s) must only occur once. Primary index are unique 
indexes for primary keys. 

BTree index, for n keys values, constructed by build a tree 
with height (h) and a degree (t). Where the degree (t) is greater 
than or equal to 2. The worst case of BTree is O (log n) 
comparisons. Number of branches for BTree index is larger 
than the number of branches of other balanced tree structures. 
Number of branches for a tree controls the logarithm base of 
complexity (Logn of base x where x equal the number of 
branches). So the base of logarithm tends to be large than 
required by other tree structures. And what this mean, it means 
that if we have n key values and we want to build a tree of base 
x, x branches, as we increase x number of nodes visited during 
search tends to be smaller. BTree tend to have smaller heights 
than other trees with the same number of key values. Path to 
leaf node not exceeding Logn / 2 K while a binary tree is Log 2 
K, where Search k-key values are K1, K2, …, Kn –1. 

BTree make all nodes full at least to a minimum percentage 
to save space and reducing number of disk references. Space 
complexity of BTree is O (L/B), where L: length of the 
sequence and B: block size [22]. 

In Hash index, bucket reached by key using a hashing 
function. Records with different key values may map to same 
bucket; thus entire bucket has to be searched sequentially to 
locate record. 

Bucket Overflows caused by insufficient buckets and 
distribution of records (Overflow chaining) Collision handling 
with O (1) complexity, for worst cases performance may 
deteriorates to O (n). An ideal hash function is 
uniform/Random and worst map to one bucket. Space 
complexity for formal Hash function is O (nlogn), where n: 
number of keys [22, 13]. Hashing functions divided into two 
types, Uniform distribution: all buckets have the same number 
of search-key values. Random distribution: on average, at any 
given time, each bucket will have the same number of search-
key values, regardless of the current set of values. 

Primary index and unique index both can consists of one or 
more fields and both can be clustered/non clustered indexes. 
The difference is that Primary cannot be Null while Unique can 
be, there can be only one Primary index on a table but you can 
have more than one Unique index. 

 

IV. EXPERIMENTAL RESULTS 

We used two approaches for index evaluation. In the first 
approach, we created the index on one field representing the 
coefficients of WT and investigate the effect of changing the 
type of the index on the response time, which is measured in 
millisecond. Table II shows the response time. For the second 
approach, search field is spitted into two parts mainly which 
are the wavelet transformation coefficients (A, B). Each part 
consists of four columns. Table III show the results of this 
approach. 

TABLE II.  EVALUATION OF SAMPLE DATA (UNDER SIX 

RESOLUTIONS W) USING DIFFERENT INDEX TYPES. 

Index 

type 
W1 W2 W3 W4 W5 W6 

DEFAULT 
0.002 0.029 0.233 0.677 0.961 1.153 

Normal 

Index 
0.010 0.167 1.380 4.05 5.891 6.350 

PRIMARY 
0.093 0.190 1.470 4.233 6.064 6.428 

Fulltext 0.002 

0.002 

0.003 

0.026 

0.028 

0.029 

0.216 

0.227 

0.228 

0.259 

0.257 

0.227 

1.099 

1.155 

0.993 

1.478 

1.478 

1.548 

UNIQUE 
0.009 0.172 1.406 4.077 5.931 6.357 

Hash 0.010 

0.010 

0.011 

0.164 

0.167 

0.170 

1.363 

1.376 

1.378 

4.059 

4.13 

4.252 

5.920 

6.010 

6.117 

6.282 

6.363 

6.386 

BTree 0.010 

0.010 

0.010 

0.166 

0.166 

0.166 

1.366 

1.379 

2.383 

4.092 

4.054 

4.249 

5.914 

6.043 

6.088 

6.266 

6.336 

6.410 

 

For all index types we do search for the worst case if 
applicable or randomly. “Default on pk” ordered by order of 
entry, worst case is the last entry. The same is true for normal 
index, primary index, and unique index. 

Through all experiments, the searching process is applied 
using the same value, while changing index type, so we can 
results correctly. For Hashing index type, most database engine 
uses random hash function, we do the experiment by randomly 
picking values then the average access time is calculated. 



 

BTree index, which is the most popular index over database 
systems, depends mainly on sorting the data. 

Table IV shows percentage number of returned references 
to the whole database size while changing window size. 

Ratio   = (sequences retrieved) / (total size of dataset) 

TABLE III.  APPLYING INDEXES FOR EIGHT COLUMNS SEARCH 

FIELDS. 

Index 

type 
W1 W2 W3 W4 W5 W6 

DEFAULT 

ON pk 

0.018 0.010 0.067 0.209 0.281 0.279 

Normal 

Index 

0.001 0.001 0.001 0.001 0.001 0.001 

Hash 0.001 0.001 0.001 0.001 0.001 0.001 

BTree 0.001 0.001 0.001 0.001 0.001 0.001 

V. DISCUSSION 

We have applied indexes in two different ways, one field 
index and multiple fields’ index. When using one field index, 
the best performance achieved was using default index and 
Full-text. When we used BTree or primary index we get the 
worse performance over all for one field indexing. Almost all 
other types of indexes give performance close to BTree index. 

TABLE IV.  ERROR AMOUNT AT EACH RESOLUTION USED 

CORRESPONDING TO AMOUNT OF REDUCTION. 

W with 

duplication 
no 

duplication 
References% 

w1 7069 1250 0.81 

w2 73562 23283 0.65 

w3 325701 192058 0.41 

w4 662746 553933 0.15 

w5 813987 796371 0.02 

w6 836376 835106 0.002 

 

On the other hand when we used multiple fields’ index, we 
have got much better results as shown in table III. Hash, BTree, 
and normal index on the eight fields give better results when 
compared with a single field index by table III. 

Multiple field index cause overhead for calculation and 
index address updates in case that amount of updates is high 
and overhead for write operations and disk referring. But 
compared amount of overhead with multiple indexes (merge 
index) case, this overhead is less. For DNA database, update 
operations is much less than insert operations and can be 
neglected. To reduce size of WTR, singular value 
decomposition (SVD) [23] as a preprocessing step before 
building index structure for the genome database can be used. 

Window size (resolution) affects mainly needed I/O 
references. When we increase window size the I/O reference 
operation decreases as shown in table IV. Changing the 

resolution of  the wavelet transformation resolution from low 
value to high value (from 8 char to 256 char) leads to increase 
in size of the number of wavelet coefficients and the time of 
scanning the database. From  table IV when using  w1  we  get  
81%  of  overall  database reference  while for  w4  this 
percentage goes down to 15%. Changing window size affect 
I/O reference percentage directly so as this percentage can be 
used as a threshold according to application needs. 

VI. INDEX SPACE COMPLEXITY 

Table V shows the space complexity of using one column 
index with the following index types: full-text, primary index, 
8 column index of types unique, primary, and normal index. 

TABLE V.  SPACE COMPLEXITY TABLE (B: BYTES, KB: KBYTES), 
RANGE VALUES STANDS FOR SPACE USED FOR DATA AND FOR INDEX. 

W value 
UNIQUE Primary 

Index 

w1 2048- 

2085 B 

46250- 

55296B 

92500- 

122880B 

w2 861471- 

975872 B 

861471- 

975872B 

861471- 

975872B 

w3 6940- 

7850 KB 

6940- 

7850 

6940- 

7850KB 

w4 20015- 

22638 KB 

20015- 

22638 KB 

 

20015- 

22638KB 

 

w5 28775- 

32545 KB 

28775- 

32545KB 

28775- 

32545KB 

 

w6 30175- 

34128 KB 

30175- 

34128KB 

30175- 

34128KB 

 

    

 

 

 

Figure 2.  Space cost 

 

 

 

 



 

Figure 3.  Space cost for all one field (primary, Full-text) and 8-column 

(index, primary, unique). 

Tables VI and table VII show that space complexity 
variation while changing window size for different index types, 
it needs to be considered carefully. We can see that index size 
is larger than data size for all types, as seen from table VII 
where index size is low compared with data size. 

TABLE VI.  SPACE COMPLEXITY TABLE (B: BYTES, KB: KBYTES), 
RANGE VALUES STANDS FOR SPACE USED FOR DATA AND FOR INDEX. 

W value 
UNIQUE Primary 

Index 

w1 2048- 

2085 B 

46250- 

55296B 

92500- 

122880B 

w2 861471- 

975872 B 

861471- 

975872B 

861471- 

975872B 

w3 6940- 

7850 KB 

6940- 

7850 

6940- 

7850KB 

w4 20015- 

22638 KB 

20015- 

22638 KB 

 

20015- 

22638KB 

 

w5 28775- 

32545 KB 

28775- 

32545KB 

28775- 

32545KB 

 

w6 30175- 

34128 KB 

30175- 

34128KB 

30175- 

34128KB 

 

 

TABLE VII.  SPACE COMPLEXITY TABLE (B: BYTES, KB: KBYTES), 
RANGE VALUES STANDS FOR SPACE USED FOR DATA AND FOR INDEX. 

W value 
UNIQUE Primary 

Index 

w1 2048- 

2085 B 

46250- 

55296B 

92500- 

122880B 

w2 861471- 

975872 B 

861471- 

975872B 

861471- 

975872B 

w3 6940- 

7850 KB 

6940- 

7850 

6940- 

7850KB 

w4 20015- 

22638 KB 

20015- 

22638 KB 

 

20015- 

22638KB 

 

w5 28775- 

32545 KB 

28775- 

32545KB 

28775- 

32545KB 

 

w6 30175- 

34128 KB 

30175- 

34128KB 

30175- 

34128KB 

 

Data size: is highest when using 8-columns index structure, 
low value when using one field index. 

Index size: when using 8-columns almost data and index 
size are the same. And when using one field index, data and 
index sizes are relatively the same too. 

When comparing time with size of one field index, we 
found that best time performance achieved by DEFAULT ON 
pk and full-text but full-text had high space requirement. For 8-
column index structure best time achieved by normal, hash, 
and BTree index. 

Access time for 8-column is better than that of one field 
index but index size equal or more than data size which is a 
large value. Lowest index size is primary and Full-text as 
shown by Fig. 3. 

Our study shows that using multi-fields index improve 
performance over all types of indexing in spite of the type of 
index we used. First experiment shows that using specialized 
index type like full-text or primary index in integer fields give 
the best performance over using BTree or Hash indexing. 

CONCLUSION 

Different window sizes provide multi-resolution index 
structure.  This property gives user a threshold value to 
determine his needs, and support queries of different sizes. 
Through our work, we see that no need, when doing query 
search, to scan the whole database. Instead of scanning the  
whole  database  a  subset  of  sequences,  which  we  call  
candidate  sequences,  will  be referenced from the database 
after the filtration step. By this way we have minimized the 
number of disk pages that will be visited at the final stage. 

Space and time complexity shows that using special type of 
index (like Full-text) or using the primary index, of one field, 
leads to decrease index size, like the full text index when using 
w6 compared with unique index for the same window size as 
shown by table VI and VII. And a higher access time compared 
to eight fields index type, which lead to larger index size but 
better access time. This is true, as the Full-text get advantage of 
its properties as a special index for the search field and the 
primary index is on integer field, which is less in size than the 
8 columns (64.303 compared with 29.577 about one half). This 
means that a good representation of search field must occupy 
less space. Small size index, which can be fit in memory, allow 
the use of in- memory searching mechanisms which gives fast 
searching time. 

From the discussed results, we can see that we need to try 
to find a less size index structure. Index size is larger than 
database size, when building index upon eight columns search 
field. Building the primary index upon a small size relation 
field is efficient in time and space. Sequence transformation to 
numerical format (compact form), good performance index 
structure (size and time and the use of multi-field index type), 
and early pruning of false sequences hits leads to build the 
desired structure. 
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