
Indexing for Large DNA Database

sequences

Samer Mahmoud Wohoush

Palestine Polytechnic University

Halhul, Palestine

samer_wh@yahoo.com

Mahmoud Hasan Saheb

Palestine Poletechnic University

Hebron, PO.Box 198, Palestine

alsaheb@ppu.edu

Abstract—Bioinformatics data consists of a huge amount of

information due to the large number of sequences, the very high

sequences lengths and the daily new additions. This data need to

be efficiently accessed for many needs. What makes one DNA

data item distinct from another is its DNA sequence. DNA

sequence consists of a combination of four characters which are

A, C, G, T and have different lengths. Use a suitable

representation of DNA sequences, and a suitable index structure

to hold this representation at main memory will lead to have

efficient processing by accessing the DNA sequences through

indexing, and will reduce number of disk I/O accesses. I/O

operations needed at the end, to avoid false hits, we reduce the

number of candidate DNA sequences that need to be checked by

pruning, so no need to search the whole database. We need to

have a suitable index for searching DNA sequences efficiently,

with suitable index size and searching time. The suitable selection

of relation fields, where index is build upon has a big effect on

index size and search time. Our experiments use the n-gram

wavelet transformation upon one field and multi-fields index

structure under the relational DBMS environment. Results show

the need to consider index size and search time while using

indexing carefully. Increasing window size decreases the amount

of I/O reference. The use of a single field and multiple fields

indexing is highly affected by window size value. Increasing

window size value lead to better searching time with special type

index using single filed indexing. While the search time is almost

good and the same with most index types when using multiple

field indexing. Storage space needed for RDMS indexing types

are almost the same or greater than the actual data.

Keywords-component; Large database, DNA sequence, index

structure, sequence transformation, wavelet transformation, RDMS

indexing.

I. INTRODUCTION (HEADING 1)

Dealing with string of characters for large database is not
easy in term of space and access time. Genome databases as
NCBI have a huge size because of the daily addition of new
data. Electronic books and biological data are good examples
for large databases that include text and sequences. For genome
database we can consider DNA sequence as a key value that
distinguishes a sequence from another.

Most of the work on genome database tries to find small
size, efficient digit value that can represents DNA sequence.
The problem of large number of I/O operation when accessing
large size database is very costly in term of space and
performance. Accessing the database need to be in minimum
amount and at last stage after filtrations to reduce the number
of records need to be accessed.

We will consider the DNA sequence as the key value for
genome database. Transforming this key to a digit is required
to increase efficiency. Wavelet transformation technique [1] for
DNA sequences is a suitable choice for our needs to do
transformation as it gives us two advantages.

Firstly, it saves sequence order while considering amount
of overlapping carefully. Secondly, transforming characters to
digits depends on frequencies of characters.

Little amount of storage is needed as after finding first level
wavelet coefficients[1], the second level can be calculated
depending on the first level instead of referring to the original
sequence again. Our evaluation use substring searching for
matching identical pattern by sliding window, this will reduce
candidate list of sequences need to be checked, and at the last
stage refer to database disk for validations after pruning, in
other words, optimization for the number of I/O operations.

Relational database provide different types of indexing like
BTree, RTree[2], and hashing. Using these types of indexing to
store Wavelet transformation will be discussed later.

The rest of the paper is organized as follows: section 2
reviews of related works. Section 3 presents data samples and
methodology. Our results will be presented in section 4.
Section 5 discusses the results. Conclusions will be discussed
in section 6.

II. RELATED WORK

Different methods had been used to transform and index
huge database systems. Dynamic programming [3, 4] has time
and space complexity of O(nm) for two strings S and Q of
lengths n and m, for database comparisons it will needs matrix
of size nxm. Hence for long sequence and large database this
method will be not practical in term of both space and time. It
finds the difference between S and Q using a heavy
computation method; the edit distance.

The use of r Binary masks [3] of size n, M1, M2,…,Mr to
move through S, of size m, by word size of w has complexity
of O(nmr/w). For large value of m, this complexity will be very
close to dynamic programming.

Dictionary based indexing [3] for a database of sequences
Si (i:1,2,…,n), creates index structure of size n corresponding
to database size, predefining query lower bound length (L) to
be equal to log(n) assumed. Query with larger length will be
partitioned into smaller parts. All substrings of length L
mapped to integers using hashing function and for queries

larger than L split it into sub- queries, then search each sub-
query alone and combine the results. This method indexes all
possible strings of a pre-specified length L. Dictionary based
index size is larger than the database.

BLAST technique [5] used to find local similarity [6] and
not global similarity. It is a string matching tool that has two
phases: search all database sequences for a fixed substring
length w (between 3 and 11) for exact matching (at i). And
using a threshold 't', continue searching after the exact match at
both direction, left and right, for distance more than 'i' and
before 'i-w' till exceed 't'. It stores pointer for location 'i'. So,
space needed is more than the database size.

Suffix array [7] scans database strings using a window
(window size w, overlapping amount ∆) and count repetition of
all possible k-tuples. It stores result at vector of size σ^k (σ
referred to alphabet chars A, C, G, T). Then it indexes those
vectors at hierarchical binary tree and to compare new query
with those vectors it uses Edit distance method. It runs 25 to 50
times faster than BLAST. Disadvantage of this method is the
allowing of false drops and index size increase linearly with k
value.

The Multi-Resolution index Structure (MRS) [5, 8] uses a
sliding window of size w. MRS seeks the result set in different
resolution levels. However, the authors only focus on the cost
of MRS, and do not evaluate the filtrations efficiency of their
proposed technique.

SST [9, 10] scans the database by window w and map
results to vector of size 4^w. Then hierarchical clusters, non
overlapping, built using k-means algorithm, as any new query
need to be processed against the database, using cluster mean
and neglect clusters that are far away from the new query.
Disadvantages of SST are the complexity of calculations, and
false clustering.

The use of blocked inverted index [11] consists of index
file (distinct terms) and a set of inverted lists with large-scale
full-text system. This method solves two problems: The high
storage overhead and considering posting list structure with
differentiation between short and long lists. Through this work
[11], blocked inverted index where used with skipping
approach and propose the random access blocked inverted
index (RABI) which enhance space and storage efficiency.
This approach divide index into blocks and do compression to
different parts of the block using encoding method. For
compression it uses Binary interpolative coding (BIC). Access
is done at both levels block level and inner block level.

Build self-index [10] for data records using stuffing of
delimiters, and give an upper bound, limited by a number of
bits, of permanent space in worst case. Analysis’s done for
space and time efficiency. Storage experiments compare the
effects of using stuffing and performance examines three
process construct, recover, and retrieval. Results show the
effectiveness of FM-index in space and performance. This
paper shows the advantages of using FM-index with the
addition of adding delimiters.

Handle structural mathematical text and mathematical
operation [12] by index real-world scientific documents
containing mathematical notation based on full text searching.

Mathematical indexing address the following issues,
extraction and storing of mathematical notation, and
ranking function.

Full text search [13, 14] can be done by different ways. One
way is by using N-gram which means we take N characters
each time we do processing. N characters processed for
searching, by start with 2-gram index then supplement with
higher-gram index. Frequently used search terms selected for
the incremental index for that this approach have two
functions, search engine and index creation engine. For long
sequence number of AND operation is large which cause low
performance for search, incremental indexing should solve this
problem by carefully selecting search terms using search
intensive approach. Experimental results show the
effectiveness of incremental index even for further stored
terms. This method build the incremental index upon subset of
terms not for all terms to save space and provide efficiency for
most search terms, while in our case we need to have index
structure to be ready before searching.

Building suffix array needs time O(n) and space O(n) for
constant size text and Suffix tree needs O(nlogn) time and O(n)
space. Suffix array and tree are suitable for pattern searching.
Another method uses Compressed Suffix Array [15] and the
output array of Burrows-Wheeler Transformation (BWT). In
this approach a new algorithm has been developed using
terminators at the end of each word.

The use of signature of files for documents retrieval for
large database systems allows the use of parallel hardware
architecture [16, 17] for full text searching. Controlling false
drop and using suitable hashing function with buffer and good
storage overhead. The parallel process can be applied for
process a document and between documents too. It provide a
way for don’t care characters.

An ontology kit for full text searching [18] focuses on
finding words related to a certain concept (using relevancy
ranking function) from a set of concepts. This kit consists of
three layers: Full text layer for full text indexing (a Word-based
index) and full text searching, Ontology layer for concept
definition and ontology maintenance, and User layer for the
programming issues.

This kit made use of Apache Lucence and Jena
development kits [http://lucene.apache.org/]. They work to get
a relevancy ranking between documents that meet the query,
which may be met by large number of documents. This kit is a
sample of development kits used for evaluating index structure,
this kit process depend on relevancy ranking rather than
accurate matching.

Most of mentioned works try to build lower bound (D) for
the edit distance (ED). Edit Distance is time and space
consuming (O(|n|*|n|) time & space) for the whole string. In
general we can see that for three strings s1,s3 and s3, if
D(s1,s2) > D(s1,s3), then ED(s1,s2) > ED(s1,s3)).

III. DATA AND METHODOLOGY

Data used in our experiments shown in table I, we have
picked different types (Species kingdom) including Archaea,

Eukaryotic, and Bacteria. The Sample file contains DNA
sequences only and is of different sizes as show in table I.

TABLE I. DATA SAMPLES USED BY OUR EXPERIMENTS

Species

kingdom
File name Length Size

Archaea

NC_010315.fasta
NC_008318.fasta

EU881703.1.fasta

NC_006389.fasta
AY596291.1.fasta

NC_013966.fasta

NC_011766.fasta
NS_000190.fasta

1,051
15,717

28,643

33,927
33,446

63,034

1,365,223
2,082,083

2KB
16KB

29KB

34KB
34KB

630KB

1353KB
2000KB

Eukaryotic

AP009202.1.fasta

NC_009684.fasta
NC_010093.fasta

NC_013009.fasta

16,240

16,604
153,819

879,977

17KB

17KB
153KB

872KB

Bacteria

NC_011841.fasta
NC_009471.fasta

NC_013210.fasta

NC_009926.fasta
NC_013009.fasta

30,652
37,155

191,799

374,161
879,977

31KB
37KB

190KB

371KB
872KB

A. Solution approach

Our approach start by converting DNA sequence into eight
columns vectors corresponding to the two wavelet
transformation factors; A and B. Calculation like data center,
four k-means, four vectors of size v with fixed size of eight-
columns instead of a sequence of size n which is variable and
long is less in storage size. This transformation has been used
for computing second coefficient wavelet transformation with
six different windows ‘w’ of sizes 8, 16, 32, 64, 128, and 256
chars Fig 1 shows the conversion steps.

Figure 1. Schema chart shows transformation, building index structure,

preprocessing new query, and comparison

After transformation we build an index which will be used
for searching. Transforming data sequences to numerical
representation (NR) will be accomplished.

The aim of using different window sizes 'w' is to have
different resolution levels of representation of a sequence; we
aim, through using different window sizes, to find the values
of the window sizes where index structure remain stable, in
other word we need the window size where space and search
time is optimal. We assume the windows sizes 'w' to be 2x. By
this assumption after finding the first order wavelet
transformation by scanning the database by window w1, we
can find the wavelet transformation for window values wi for
i>1 depending on previous window value (w1) and no need to
scan the database again.

Part 1 algorithm:

Input:

Database of n sequences, n is a large value.

Each sequence will be donated by Si, i Є [1, .., n] with length Li.

Preprocessing:

We have different window sizes (Wx), x =1, …,5

Transform each Si into number format using Wavelet

Transformation (WT), no need to

reference database again as WT for W2 can be calculated from

W1 as: (A1,B1),(A2,B2) -> (A1+A2,A1-A2)

Initialize i=0

For each Wx value from (Wx min,…, Wx max){

Move Wx over Si to produce Si[i-Wx’] Calculate WT for

each Si[i-Wx’]

Wx’ = Wx’ +1 and i++

Output: set of subsequences (SSi,j), j Є[1,…,

m],m=Li/Wx, for each Si

}

Output: two values

1. Transformed subsequence

2. Sequence pointer

Loop through all sequences (i){

For each pair value of (A,B) for a sequence(i)

Remove duplicated (A,B) values

}

Store pair values at database table.

Build index:

Select index type from RDMS index types, build data structure

upon this index type.

Search by a query sequence:

Search for a new sequence NQ of length LNQ.

Convert NQ to WT to produce LNQ/Wx subsequences (NQi)

after moving Wx window over NQ.

Search the database for matching between NQi and SSi,j.

B. Wavelet coefficents

Each NR row corresponds to a DNA sequence, consists of
8 columns vector. The columns is the wavelet second order
coefficients (A,B), A is a 4 columns represent frequency of
chars (A,C,G,T) second part B is the difference. Example
bellow describes how wavelet works [3]:

V(k,i) =(A(k,i) ,B(k,i)), (1)









≤<+

=
=

+−− ,log0

0)(

212,12,1

,

nkAA

kcf

A

ikik

i

ik

 (2)









≤<−

=
=

+−− ,log0

00

212,12,1

,

nkAA

k

B

ikik

ik
 (3)

For a sequence u: [ACTC TAGC], consider frequency is
done by the order (A, C, G, T) =(2, 3, 1, 2), divide u in two
equal parts and recalculate frequency again then do subtraction,
you get [1201, 1111] →(2 3 1 2 , 0 1 –1 0).

The sequences will be represented using six window sizes,
wi for i= {1, 2, 3, 4, 5, 6}, Each window size 'wi' representation

will correspond to a final matrix for each sequence, this means
we will have six matrices corresponds to wi value.

Second step: uploading the data on a rational database
system (RDMS). We used RDMS to get advantage of RDMS
indexing systems like BTree, and Hash. Before uploading data
to database tables, all repeated rows had been eliminated to
make index size less since there is no need for the repeated data
rows. Table III shows results of transformation and percentage
of repeated data.

Seven types of indexing have been used for evaluation. The
types are index on primary key, normal index, primary index,
full-text, unique, Hash, and BTree. Our experiments done using
two PC’s, one with 1GB memory 2GHz, second one is 2
x1GHz CPUs 4GB memory. RDMS used is MYSQL v5.0.1
[19, 20] to store index in, webserver is Apache and language
script used is PHP v5 for testing index reach, and Matlab
version 7 used for wavelet transformation.

C. Index types

Full-text index allow search for natural language text, some
features are: Excludes partial words and words less than x
characters in length (3 or less), words that appear in more than
half the rows, Hyphenated words are treated as two words,
Rows are returned in order of relevance, descending, words in
the stopword list (common words) are also excluded from the
search results. Full-text had been used to achieve high
performance indexing for XML [21].

"Normal" Indexes are the basic index type used by RDMS
and require data field to be ordered, Normal Index have no
restraints such as uniqueness. Unique Indexes are the same as
"Normal" indexes with one difference: all values of the indexed
column(s) must only occur once. Primary index are unique
indexes for primary keys.

BTree index, for n keys values, constructed by build a tree
with height (h) and a degree (t). Where the degree (t) is greater
than or equal to 2. The worst case of BTree is O (log n)
comparisons. Number of branches for BTree index is larger
than the number of branches of other balanced tree structures.
Number of branches for a tree controls the logarithm base of
complexity (Logn of base x where x equal the number of
branches). So the base of logarithm tends to be large than
required by other tree structures. And what this mean, it means
that if we have n key values and we want to build a tree of base
x, x branches, as we increase x number of nodes visited during
search tends to be smaller. BTree tend to have smaller heights
than other trees with the same number of key values. Path to
leaf node not exceeding Logn / 2 K while a binary tree is Log 2
K, where Search k-key values are K1, K2, …, Kn –1.

BTree make all nodes full at least to a minimum percentage
to save space and reducing number of disk references. Space
complexity of BTree is O (L/B), where L: length of the
sequence and B: block size [22].

In Hash index, bucket reached by key using a hashing
function. Records with different key values may map to same
bucket; thus entire bucket has to be searched sequentially to
locate record.

Bucket Overflows caused by insufficient buckets and
distribution of records (Overflow chaining) Collision handling
with O (1) complexity, for worst cases performance may
deteriorates to O (n). An ideal hash function is
uniform/Random and worst map to one bucket. Space
complexity for formal Hash function is O (nlogn), where n:
number of keys [22, 13]. Hashing functions divided into two
types, Uniform distribution: all buckets have the same number
of search-key values. Random distribution: on average, at any
given time, each bucket will have the same number of search-
key values, regardless of the current set of values.

Primary index and unique index both can consists of one or
more fields and both can be clustered/non clustered indexes.
The difference is that Primary cannot be Null while Unique can
be, there can be only one Primary index on a table but you can
have more than one Unique index.

IV. EXPERIMENTAL RESULTS

We used two approaches for index evaluation. In the first
approach, we created the index on one field representing the
coefficients of WT and investigate the effect of changing the
type of the index on the response time, which is measured in
millisecond. Table II shows the response time. For the second
approach, search field is spitted into two parts mainly which
are the wavelet transformation coefficients (A, B). Each part
consists of four columns. Table III show the results of this
approach.

TABLE II. EVALUATION OF SAMPLE DATA (UNDER SIX

RESOLUTIONS W) USING DIFFERENT INDEX TYPES.

Index

type
W1 W2 W3 W4 W5 W6

DEFAULT
0.002 0.029 0.233 0.677 0.961 1.153

Normal

Index
0.010 0.167 1.380 4.05 5.891 6.350

PRIMARY
0.093 0.190 1.470 4.233 6.064 6.428

Fulltext 0.002

0.002

0.003

0.026

0.028

0.029

0.216

0.227

0.228

0.259

0.257

0.227

1.099

1.155

0.993

1.478

1.478

1.548

UNIQUE
0.009 0.172 1.406 4.077 5.931 6.357

Hash 0.010

0.010

0.011

0.164

0.167

0.170

1.363

1.376

1.378

4.059

4.13

4.252

5.920

6.010

6.117

6.282

6.363

6.386

BTree 0.010

0.010

0.010

0.166

0.166

0.166

1.366

1.379

2.383

4.092

4.054

4.249

5.914

6.043

6.088

6.266

6.336

6.410

For all index types we do search for the worst case if
applicable or randomly. “Default on pk” ordered by order of
entry, worst case is the last entry. The same is true for normal
index, primary index, and unique index.

Through all experiments, the searching process is applied
using the same value, while changing index type, so we can
results correctly. For Hashing index type, most database engine
uses random hash function, we do the experiment by randomly
picking values then the average access time is calculated.

BTree index, which is the most popular index over database
systems, depends mainly on sorting the data.

Table IV shows percentage number of returned references
to the whole database size while changing window size.

Ratio = (sequences retrieved) / (total size of dataset)

TABLE III. APPLYING INDEXES FOR EIGHT COLUMNS SEARCH

FIELDS.

Index

type
W1 W2 W3 W4 W5 W6

DEFAULT

ON pk

0.018 0.010 0.067 0.209 0.281 0.279

Normal

Index

0.001 0.001 0.001 0.001 0.001 0.001

Hash 0.001 0.001 0.001 0.001 0.001 0.001

BTree 0.001 0.001 0.001 0.001 0.001 0.001

V. DISCUSSION

We have applied indexes in two different ways, one field
index and multiple fields’ index. When using one field index,
the best performance achieved was using default index and
Full-text. When we used BTree or primary index we get the
worse performance over all for one field indexing. Almost all
other types of indexes give performance close to BTree index.

TABLE IV. ERROR AMOUNT AT EACH RESOLUTION USED

CORRESPONDING TO AMOUNT OF REDUCTION.

W with

duplication
no

duplication
References%

w1 7069 1250 0.81

w2 73562 23283 0.65

w3 325701 192058 0.41

w4 662746 553933 0.15

w5 813987 796371 0.02

w6 836376 835106 0.002

On the other hand when we used multiple fields’ index, we
have got much better results as shown in table III. Hash, BTree,
and normal index on the eight fields give better results when
compared with a single field index by table III.

Multiple field index cause overhead for calculation and
index address updates in case that amount of updates is high
and overhead for write operations and disk referring. But
compared amount of overhead with multiple indexes (merge
index) case, this overhead is less. For DNA database, update
operations is much less than insert operations and can be
neglected. To reduce size of WTR, singular value
decomposition (SVD) [23] as a preprocessing step before
building index structure for the genome database can be used.

Window size (resolution) affects mainly needed I/O
references. When we increase window size the I/O reference
operation decreases as shown in table IV. Changing the

resolution of the wavelet transformation resolution from low
value to high value (from 8 char to 256 char) leads to increase
in size of the number of wavelet coefficients and the time of
scanning the database. From table IV when using w1 we get
81% of overall database reference while for w4 this
percentage goes down to 15%. Changing window size affect
I/O reference percentage directly so as this percentage can be
used as a threshold according to application needs.

VI. INDEX SPACE COMPLEXITY

Table V shows the space complexity of using one column
index with the following index types: full-text, primary index,
8 column index of types unique, primary, and normal index.

TABLE V. SPACE COMPLEXITY TABLE (B: BYTES, KB: KBYTES),
RANGE VALUES STANDS FOR SPACE USED FOR DATA AND FOR INDEX.

W value
UNIQUE Primary

Index

w1 2048-

2085 B

46250-

55296B

92500-

122880B

w2 861471-

975872 B

861471-

975872B

861471-

975872B

w3 6940-

7850 KB

6940-

7850

6940-

7850KB

w4 20015-

22638 KB

20015-

22638 KB

20015-

22638KB

w5 28775-

32545 KB

28775-

32545KB

28775-

32545KB

w6 30175-

34128 KB

30175-

34128KB

30175-

34128KB

Figure 2. Space cost

Figure 3. Space cost for all one field (primary, Full-text) and 8-column

(index, primary, unique).

Tables VI and table VII show that space complexity
variation while changing window size for different index types,
it needs to be considered carefully. We can see that index size
is larger than data size for all types, as seen from table VII
where index size is low compared with data size.

TABLE VI. SPACE COMPLEXITY TABLE (B: BYTES, KB: KBYTES),
RANGE VALUES STANDS FOR SPACE USED FOR DATA AND FOR INDEX.

W value
UNIQUE Primary

Index

w1 2048-

2085 B

46250-

55296B

92500-

122880B

w2 861471-

975872 B

861471-

975872B

861471-

975872B

w3 6940-

7850 KB

6940-

7850

6940-

7850KB

w4 20015-

22638 KB

20015-

22638 KB

20015-

22638KB

w5 28775-

32545 KB

28775-

32545KB

28775-

32545KB

w6 30175-

34128 KB

30175-

34128KB

30175-

34128KB

TABLE VII. SPACE COMPLEXITY TABLE (B: BYTES, KB: KBYTES),
RANGE VALUES STANDS FOR SPACE USED FOR DATA AND FOR INDEX.

W value
UNIQUE Primary

Index

w1 2048-

2085 B

46250-

55296B

92500-

122880B

w2 861471-

975872 B

861471-

975872B

861471-

975872B

w3 6940-

7850 KB

6940-

7850

6940-

7850KB

w4 20015-

22638 KB

20015-

22638 KB

20015-

22638KB

w5 28775-

32545 KB

28775-

32545KB

28775-

32545KB

w6 30175-

34128 KB

30175-

34128KB

30175-

34128KB

Data size: is highest when using 8-columns index structure,
low value when using one field index.

Index size: when using 8-columns almost data and index
size are the same. And when using one field index, data and
index sizes are relatively the same too.

When comparing time with size of one field index, we
found that best time performance achieved by DEFAULT ON
pk and full-text but full-text had high space requirement. For 8-
column index structure best time achieved by normal, hash,
and BTree index.

Access time for 8-column is better than that of one field
index but index size equal or more than data size which is a
large value. Lowest index size is primary and Full-text as
shown by Fig. 3.

Our study shows that using multi-fields index improve
performance over all types of indexing in spite of the type of
index we used. First experiment shows that using specialized
index type like full-text or primary index in integer fields give
the best performance over using BTree or Hash indexing.

CONCLUSION

Different window sizes provide multi-resolution index
structure. This property gives user a threshold value to
determine his needs, and support queries of different sizes.
Through our work, we see that no need, when doing query
search, to scan the whole database. Instead of scanning the
whole database a subset of sequences, which we call
candidate sequences, will be referenced from the database
after the filtration step. By this way we have minimized the
number of disk pages that will be visited at the final stage.

Space and time complexity shows that using special type of
index (like Full-text) or using the primary index, of one field,
leads to decrease index size, like the full text index when using
w6 compared with unique index for the same window size as
shown by table VI and VII. And a higher access time compared
to eight fields index type, which lead to larger index size but
better access time. This is true, as the Full-text get advantage of
its properties as a special index for the search field and the
primary index is on integer field, which is less in size than the
8 columns (64.303 compared with 29.577 about one half). This
means that a good representation of search field must occupy
less space. Small size index, which can be fit in memory, allow
the use of in- memory searching mechanisms which gives fast
searching time.

From the discussed results, we can see that we need to try
to find a less size index structure. Index size is larger than
database size, when building index upon eight columns search
field. Building the primary index upon a small size relation
field is efficient in time and space. Sequence transformation to
numerical format (compact form), good performance index
structure (size and time and the use of multi-field index type),
and early pruning of false sequences hits leads to build the
desired structure.

REFERENCES

[1] Effective Indexing and Filtering for Similarity Search in Large
Biosequence Databases. Ozgur Ozturk Hakan Ferhatosmanoglu bibe,
pp.359, Third IEEE Symposium on BioInformatics and BioEngineering
(BIBE'03), 2003.

[2] An efficient similarity search based on indexing in large DNA databases,
In-Seon Jeong, Kyoung-Wook Park, Seung-Ho Kang, Hyeong-Seok
Lim, 2010.

[3] An Efficient Index Structure for String Databases. Tamer Kahveci
Ambuj K. Singh Department of Computer Science, University of
California Santa Barbara, CA 93106 {amer,ambuj}cs.ucsb.edu, 2001.

[4] Fast Dynamic Programming Based Sequence Alignment Algorithm.
Nur'Aini Abdul Rashid', Rosni Abdullah, Abdullah Zawawi Haji Talib,
Zalila Ali, IEEE, 2006.

[5] MAP: Searching Large Genome Databases. T. Kahveci, A. Singh Pacific
Symposium on Biocomputing 8:303-314(2003).

[6] Indexing and retrieval for genomic database.Hugh E. Williams,
Member, IEEE, and Justin Zobel, Member, IEEE Computer Society,
IEEE, 2002.

[7] S. Muthukrishnan and S. C. Sahinalp. Approximate nearest neighbor and
sequence comparison with block operations, 2000.

[8] CoMRI: A Compressed Multi-Resolution Index Structure for Sequence
Similarity Queries. Hong Sun1, Ozgur Ozturk1, Hakan Ferhatosmano
glu, IEEE, 2003.

[9] E. Giladi et al., SST: An Algorithm for Finding Near-Exact Sequence
Matches in Time Proportional to the Logarithm of the Database Size.
Bioinformatics 18, 873–877, 2002.

[10] An Efficient Approach for Building Compressed Full-text Index for
structured Data: Jun Liang, Lin Xiao, Di Zhang IEEE, 2009.

[11] Efficient Maintenance Schema of Inverted Index for Large-scale Full-
Text Retrieval, Xiaozhu Liu, State Key Lab of Software Engineering
Wuhan University Wuhan 430072, China , School of Automation
Wuhan University of Technology IEEE, 2010.

[12] Mathematical Extension of Full Text Search Engine, Jozef Misutka,
Leo Galambos, Department of Software Engineering, Charles

University in Prague, Ke Karlovu 3, 121 16 Prague, Czech Republic,
2008.

[13] Experimental Simulation on Incremental Three-gram Index for
Two-gram Full-Text Search Systems, Hiroshi Yamamoto Seishiro
Ohmi Hiroshi Tsuji IEEE, 2003.

[14] A Compact Memory Space of Dynamic Full-Text Search using Bi-Gram
Index, El-Sayed Atlam, El-Marhomy Ghada, Masao Fuketa, Kazuhiro
Morita and Jun-ichi Aoe, Department of Information Science and
Intelligent Systems, University of Tokushima Tokushima,770-8506,
Japan 2004.

[15] Breaking a Time-and-Space Barrier in Constructing Full-Text Indices,
Wing-Kai Hon, Kunihiko Sadakane_ Wing-Kin Sung IEEE, 2003.

[16] Parallel Selection Query Processing Involving Index in Parallel
Database Systems. J. Wenny Rahayu David Taniar, IEEE, 2002.

[17] An Architecture for Parallel Search of Large, Full-text Databases,
Nassrin Tavakoli and Hassan Modaress-Razavi, Department of
Computer Science, The University of North Carolina at Charlotte,
Charlotte, NC 28223 IEEE, 1990.

[18] An Ontology Enhanced Development Kit for Full Text Search, Su Jian,
Weng Wenyong, Wang Zebing, Lab of Digital City & Electronic
Service, Zhejiang University City College, Hangzhou 310015, China
IEEE, 2009.

[19] Alexander Rubin, Senior Consultant, MySQL AB, Full Text
Search in MySQL 5.1 New Features and HowTo,
http://www.mysqlfulltextsearch.com/full_text.pdf, 2006.

[20] Moshe Shadmon, The ScaleDB Storage Engine,
http://www.scaledb.com/pdfs/ScaleDB_MySQL_Preso2009.ppt, 2009.

[21] A Hybird Method for Efficient Indexing of XML Documents. Sun Wei,
Da-xin Lui, IEEE, 2005.

[22] The SBCTree: An Index for RunLength Compressed Sequences,
Mohamed Y. Eltabakh ,Wing-Kai Hon, Rahul Shah, Walid G. Aref,
Jeffrey S. Vitter Purdue University, 2008, 2008.

[23] Efficient Filtration of Sequence Similarity Search Through Singular
Value Decomposition. S. Alireza Aghili Ozgur D. Sahin Divyakant
Agrawal Amr El Abbadi, IEEE 2004.

	I. Introduction (Heading 1)
	II. RELATED WORK
	III. DATA AND METHODOLOGY
	A. Solution approach
	B. Wavelet coefficents
	C. Index types

	IV. EXPERIMENTAL RESULTS
	V. discussion
	VI. index space complexity
	conclusion
	References

