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Abstract

This paper introduces an Enhanced Multi
Objective Genetic Algorithm (E-MOGA)
running on Compute Unified Device Architec-
ture (CUDA) hardware, as a general purpose
tool that can solve conflict optimization prob-
lems. The tool demonstrates significant speed
gains using affordable, scalable and commer-
cially available hardware.

The objectives of this research are: to
enhance the general purpose Multi Objective
Genetic Algorithm (MOGA) to be ready to
execute on CUDA by parallelizing the time
consuming parts, to test the performance of
the enhanced MOGA on many testing cases,
to test the quality of the result of the en-
hanced MOGA and to study the effect of the

number of objectives on performance.

The implemented system works under
Matlab environment. It was tested on
GPU GeForce GTX 9500 in CUDA platform,
showed an average Speedup with more than
28X. The quality, measured using the error
with respect to optimal solution, outperform
the sequential MOGA.

1 Introduction

Before 2005 GPUs were used only in the
video cards for 3D rendering. Their main
applications are in personal computers, mo-
bile phones, workstations and embedded sys-
tems. The architecture of the GPU differs
from CPU; the GPU is designed and special-
ized for intensive and highly parallel com-

putation involved in graphics rendering [2].
Tens or hundreds of cores (processors), found
in the single card devoted to data process-
ing, are related to graphical operations such
as rendering, shading... etc, rather than data
caching and flow control [2].

The GPUs manufacturers open the way
for developers to use their cargo for General-
Purpose Computation on Graphics Hard-
ware (GPGPU) by different programming
language levels. Compute Unified Device Ar-
chitecture (CUDA) is one of the most power-
ful programming tools introduced by Nvidia
corporation in 2006. Before that, program-
ming platform such DirectX, OpenGL, HLSL,
GLSL were already introduced.

Multi-objective optimization is the pro-
cess of simultaneously optimizing two or more
conflicting objectives subject to certain con-
straints  [5]. The Genetic Algorithm is
one of the most popular heuristic techniques
and Evolutionary Algorithms to solve Multi-
Objective Design and Optimization problems
[7].

By returning to many implementations
using CUDA with genetic algorithm, one can
see different successful applications for this
idea in different areas such as: solving the-
oretical computer science problems including
the SATisability application [11]. Biological
application such as Autodock [8] (a Drug Dis-
covery Tool), or algorithmic problems such as
parallel 0/1 knapsack [12] .

The results show a clear improvement in
decreasing running time in many applications
by speeding up the system. When we refer



to the Autodock implementations, we can get
up to 50x on the fitness function evaluation
and 10x-47x speedup on the core genetic al-
gorithm [16].

A very related work can be found in the
implementation ” CUDA based multi obective
parallel genetic algorithm”, this work tries to
highlight the power of GPU to implement the
parallel MOGA in document search problem
[6].

2 Backgrounds

2.1 Genetic Algorithms(GA)

The genetic algorithm is a subfield of artificial
intelligence that involves combinatorial opti-
mization problems based on heuristic search
methods by exploring all the possible solution
to get the optimal one (sub-optimal may be
sufficient) [3], in many cases it will be a time
consuming operation to get the optimal solu-
tion.

In computer science, the genetic algo-
rithms are applied in many fields as a search-
ing tool, to find the optimal solution from a
very huge solution set [15, [13]. Usually this
require us to represent the problem by pre-
senting the different solutions interpreted as
a chromosome, such as, an initial population.
In addition, mutation, crossover operators, a
fitness function and a selection operator for
choosing the survivors for the next generation
should all be presented [10].

2.2 MOGA

The Multi-Objective optimization also known
as multi-criteria or multi-attribute optimiza-
tion are realistic models for many complex
engineering optimization problems. In many
real-life problems, the objectives under con-
sideration conflict with each other, and opti-

mizing a particular solution with respect to a
single objective can result in unacceptable re-
sults with respect to the other objectives. A
reasonable solution to a multi-objective prob-
lem is to investigate a set of solutions, each of
which satisfies the objectives at an acceptable
level without being dominated by any other
solution. [4].

Genetic Algorithms are one of the most
popular heuristic search technique to solve
Multi-Objective Design and Optimization
problems [7]. When the optimization process
applied on a single objective, the result will
show one optimal or sub-optimal solution by
comparing the solution space and select the
best solution. In the case of a vector-valued
evaluation function f with Y € R¥ and k > 1
(k indicate number of objectives), the situa-
tion of comparing two solutions x; and xo is
more complex.

In this case the Pareto dominance can be
used to find the optimal solution that called
the Pareto front. In the Pareto dominance,
an objective vector y; is said to dominate an-
other objective vectors ya(y1 > y2) if no com-
ponent of y; is smaller than the corresponding
component of yo and at least one component
is greater.

Accordingly, we can say that a solution
x1 is better to another solution zs, i.e., x;
dominates x2, (z1 = =2), if f(x1) dominates
f(x2). Here, optimal solutions, i.e., solutions
not dominated by any other solution, may
be mapped to different objective vectors. In
other words: there may exist several optimal
objective vectors representing different trade-
offs between the objectives [17].

Let say that we have k objectives, all to
be maximized without priority. The solution
to this problem can be described in terms of a
decision vector (z1,x2, ..., ;) in the decision
space X. A function f : (X — Y), evaluates
the quality of a specific solution by assign-



ing it an objective vector (y1,¥2, ..., yx) in the
objective space Y [9] [17].

The set of optimal solutions in the de-
cision space X is in general denoted as the
Pareto set X* C X, and we denote its im-
age in objective space as Pareto front Y* =
FXH) Y.

2.3 CUDA

In order to get the benefit from the power of
GPU for general purpose computation, many
companies developed an interfacing language
to access the complex structure of the GPU
card, as a result; There are many program-
ming interface and IDEs for GPU such as
HLSL, GLSL, Cg or brookGPU, but the most
common used and advanced is CUDA (Com-
pute Unified Device Architecture).

In November 2006, NVIDIA introduced
CUDA [14]. a general purpose parallel com-
puting architecture, with a new parallel pro-
gramming model and instruction set archi-
tecture, which uses the parallel compute en-
gine in NVIDIA GPUs to solve many com-
plex computational problems in a more effi-
cient way than on a CPU. CUDA comes with
a software environment that allows develop-
ers to use C as a high-level programming lan-
guage [2].

However CUDA works only within envi-
ronments that contain NVIDIA graphic cards
in it [1]. By programming under CUDA, the
operations can be addressed to either GPU or
CPU.

By wusing CUDA, the CUDA-enabled
GPU (called device) is exposed to the CPU
(called host) as a co-processor. This means
that each GPU is considered to have its own
memory and processing elements that are sep-
arated from the host computer. To perform
useful work, data must be transferred be-
tween the memory space of the host computer

and CUDA device(s). For this reason, perfor-
mance results must include input and output
(I0) time to be informative.

3 E-MOGA paltform

The designed platform can work on any com-
puting environment contains the CUDA en-
abled device and a pre-installed software.
The needed software are: CUDA, Matlab,
GPUmat, Visual C++.

CUDA architecture is designed to exe-
cute an arithmetic or logic operation on huge
amount of data. On the other hand, this ar-
chitecture is not designed for looping, branch-
ing or if-statement instruction.

Since the Multi-Objective Genetic Algo-
rithm is designed and based on many loops,
branching, sorting and computation; the im-
plementation phase will split the program
into two parts of sub-programs:

1. Sub-program that runs on GPU; high
computation without the looping or
branching style.

2. Sub-program that runs on CPU; the
main subprogram, all the branching,
looping and conditional (the main part).

To convert MOGA into E-MOGA, many
modification should be take a place. The
modifications can be summarized as follow:

1. Transferring the huge mathematical
computations to the GPU instead of
CPU.

2. Exploring the loops as vectors; paralleliz-
ing loops.

3. Mixed implementation;
Matlab script.

C/C++ and



4. Convert from Matlab script to compiled
files.

The modifications that summarized in
the previous points, tries to increase the per-
formance of the system; in the first point,
it transfer the huge computation after paral-
lelizing its operation to be executed on GPU
instead of CPU. The second modification to
parallelizing the loops and the conditional
statements by replace it with parallel explo-
ration. The third point is to use a mix im-
plementation between different languages to
get integrate between performance and ease
of use. The last on is to convert the Matlab
script to a compiled file, this will reduce the
execution time.

To realize the objective of our research
we propose the structure shown in figure
the structure show the relation between sys-
tem component as layers. In this figure, it’s
shown that the E-MOGA will split the exe-
cution between CPU and GPU. The Mtlab
will host the E-MOGA execution, and as we
know, the Mtlab is not designed to be exe-
cuted on GPU, so, additional layers were used
to make the Matlab able to execute on GPU.
The additional layer consists from two SDK,
C for CUDA and GPUmat. GPUmat is a
Software Development Kite that allows stan-
dard MATLAB code to run on GPU.

[ E-MOGA ]

( Matlab
(= Jem=] |

[ cubpa |
{ GPU ‘

CPuU

Figure 1: System structure

Table 1: benchmarks mathematical formula-
tion

benchmark mathematical formula
ZDT1 f1(z) = x1
9@) =1+ 23 TP,
h(f1,9) =1— /&
7ZDT2 f1(z) = x1
g@) =1+ 27 SP o2
h(f1,9) =1-(11)2
ZDT3 fi(z) = z1
9(@) =14 727 Xio s
h(fi,9)=1— % - % X sin(107 1)
ZDT4 fi(z) = z1
g(x) =14+10%x (n — 1)+ 37, [z% — 10 x cos(47rzi))}
n(f1.0) = o) [1 = /55 = Fysinaons)]
ZDT6 fi(z) =1 — exp(—4xz)sin®(6mzy)
g(z) =1 +9 [ Zi=2%s
n—1
h(f1,9) = g(e) [1 = (%)2]2 .
sin? (/37 22))
Schaffer F6|f(z1,z2,...,zn) = 0.5 + W
Griewank |f(z1,22,...., zn) = 14 (0.00025) x >0 z? | 1 cos(m—ii)

4 Experimental Results and
Analysis

this section contain the experimental tests
and results.

4.1 Experimental Results

The obtained results of the enhanced version
of MOGA were analyzed, tested and com-
pared to the performance of the existing sys-
tem to ensure the quality of the results. The
tests steps are done on a selected benchmarks.
Table [l shows the selected benchmarks with
the used constrains.

To make the testing process easy and fair,
the selected regions(constrains), dimensional-
ity and the optimal solution vector were set
the same for all benchmarks as shown in table

2

MOGA needs to define the stopping crite-
ria. The used stopping criterias are: A popu-
lation of 15*(the number of variables) individ-
uals and maximum generations of 400*(the
number of variables) with epsilon 10e-3 (the



Table 2: benchmarks properties

property value
constrains —100 < z; <100
dimensionality 10, 20, 30, 40, 50
optimal solution | z* = {0,....,0}

Table 3: execution time for benchmarks on
the existing and proposed systems

difference between the change of good solu-
tions).

4.2 Performance Analysis

Depending on the stopping criteria, and, since
MOGA will start the population randomly,
so the algorithm will not take a fixed time to
reach the Pareto set for any benchmark each
run time, so the average time should be taken
for (n) executions.

The tests were taken for both systems;
CPU only and CPU-GPU with different num-
ber of objectives on each benchmark. The
tests results are shown in table Bt

4.3 Solutions Quality Analysis

The quality is the error measure in the results,
and it is an important factor that should not
be ignored. To check the quality of the re-
sults, we can graphically compare between
the outputs of the two systems by drawing the
results of any two variables (2-D) and make a
comparison between the points positions. In
Figure a comparison between two outputs
are shown.

It’s clear that both figures almost contain
the same number of points, but a deep look
to the CUDA result, the result distribution is
very close to the optimal solution (the opti-
mal solution (0,0) in this case), on the other
hand, the CPU solution take a larger range
of distribution.

The graphical comparison is not an
enough indicator of the results quality, so, a

Benchmark|Dimension|CPU-time|GPU-time|SpeedUp
ZDT1 10 217 T 3
20 785 178 5
30 3218 224 15
40 4233 269 16
50 6281 340 19
ZDT2 10 379 56 7
20 548 69 8
30 3177 210 16
40 4216 239 18
50 4979 197 26
ZDT3 10 504 135 4
20 1085 144 8
30 3129 188 17
40 4238 214 20
50 14035 260 54
ZDT4 10 133 46 3
20 970 133 8
30 1190 150 9
40 2318 182 13
50 8263 227 37
ZDT6 10 123 32 4
20 382 68 6
30 1010 113 9
40 2118 159 14
50 9820 214 46
Schaffer F6{10 100 32 4
20 197 60 4
30 572 100 6
40 1331 167 8
50 1413 162 9
Grewink 10 77 28 3
20 363 61 6
30 874 97 9
40 1600 158 11
50 9820 214 46
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Figure 2: the Pareto front after the final iter-
ation on E-MOGA
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Figure 3: the Pareto front after the final iter-
ation on MOGA

new idea was implemented in equation

n

D (X - X2,

i=1

Q= (1)

The quality can be measured by tak-
ing the summation of distances between the
Pareto front and the optimal solution; the
smallest value indicates that the Pareto front
Table [
shows a sample of a scalar values that indicate
the results quality:

includes more feasible solutions.

5 Analysis

From table [3] it’s clearly shown that the
proposed E-MOGA is faster than the exiting
MOGA in all cases and when the dimensional-
ity (number of variables) increases, the power
of the GPU raises to handle the complex com-
putation on its parallel architecture.

The speed up varies due to the complex-
ity of the problem; as the number of objec-
tives increase, the system becomes more com-
plex to be solved and needs more time. The
GPU performance can beat the CPU perfor-
mance all the time. The minimum speed up

Table 4: solution quality for benchmarks on
the exiting and proposed systems

Benchmark|Dimension|CPU-Quality|GPU-Quality [Quality difference
ZDT1 10 64.5 28.5 36
20 112.9 34.9 78
30 202.3 69.6 132.7
40 164.2 69.9 94.3
50 186 97.8 88.2
ZDT2 10 408 17.7 390.4
20 390.4 115.8 274.7
30 573.9 54.7 519.1
40 613.3 74.8 538.5
50 152.9 93 59.9
ZDT3 10 201.2 119.2 82
20 69.1 41.3 27.9
30 299.1 58.5 240.7
40 337.5 94.2 243.3
50 167.6 102.7 64.9
ZDT4 10 121.8 16.2 105.6
20 81 30.3 50.7
30 53.5 49.4 4.1
40 98.6 74.2 24.3
50 98.8 83.8 15
ZDT6 10 27.2 22.7 4.5
20 122.2 45 771
30 224.5 64.3 160.2
40 105.5 86.6 18.8
50 489.9 108.9 381
Schaffer F6{10 24.1 4 20.1
20 58.4 5 53.4
30 81.6 8 73.6
40 83.6 7 76.6
50 129.7 11 118.7
Grewink 10 17 3 14
20 36 5 31.0094
30 64.4 6 58.4
40 86 8 78

can’t be less than 2.7X and the speed up can
increase to become more than 53X in some
cases. The following figure [4] shows the re-
lation between the number of objective and

speed up.
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Figure 4: the relation between number of ob-
jective and the speedup

Again, it is clear from table [ that the

60



new system does not only beat the existig sys-
tem when comparing the execution time,but,
also the quality of the result is better in all
cases.

6 Conclusion

The GPU can increase the performance of
computation with a good significant speedup,
that we can use in many applications needing
a fast computation.

The CUDA architecture differ from the
other parallel architecture; it’s designed to
handle the mathematical and logical opera-
tions with less capability to handle other op-
erations. So the performance of the systems
runs on GPU can be increased if the program-
mer makes a good software design and makes
the GPU busy all the time.

Since the CUDA only execute sub-
programs, the main controller will stay the
CPU and that will cause transfers of data be-
tween the host (computer) memory and the
device (GPU card) memory and vise versa.
The memory access is time consumption and
can’t be ignored; so the designer of the system
should try to minimize the memory transfer
mainly when the problem does not take much
time of execution. This problem could be
shown clearly in our case when the dimen-
sionality of the benchmark is 10.

In many implementations, when they try
to work on performance enhancement, the de-
velopers do not highlight the quality of the
system after improvement. In our implemen-
tation, we work on both, performance and
quality. The result indicates that we got a
better result than the existing system.

Many related implementation were built
on the parallel MOGA that should work on
many computers with CUDA enabled devices.
By comparing the results with others, we can

see that we got a general purpose tool that
deliver a good performance on a single com-
puter with better quality.
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