
Parallelization of Sobel Edge Detection Algorithm

Haneen Tartory
Master of Informatics

Palestine Polytechnic University

Hebron, Palestine

haneen@student.ppu.edu

Mohammed ALDasht
Assistant professor at IT department

Palestine Polytechnic University

Hebron, Palestine

mohammed@ppu.edu

May 23, 2012

Abstract

The size of images in image processing considered a
critical point in processing the images, so we must
process the large size of images in small time es-
pecially in medical applications.In this paper, we
present a new design of parallelizing Sobel edge de-
tection algorithm in order to decrease the computa-
tion time. The parallel algorithm is implemented
using MPI library and decentralized architecture.
The new methodology depending on domain and
function decomposition to improve the results. Ex-
perimental is done in one machine and the results
demonstrate that the new design gives a good re-
sults.

1 Introduction

Image processing is a technique to enhance the im-
ages received from camera or a sensor, where image
processing is used in different applications such as:
medical imaging, remote sensing, document pro-
cessing, graphic art, and others[1]. The output of
image processing is information that is critical in
some applications[1].

The size of images in image processing consid-
ered a critical point in processing the images, so we
must find methods to process the large size of im-
ages in small time. Recently, some studies focused
on using parallel algorithms for image processing.

(a) Before (b) After

Figure 1: Image before and after edge detection[3]

In this paper, we proposing a design to paral-
lelize the edge detection which is an active research
filed and has used in many applications in differ-
ent areas, especially in medical applications. Edge
detection refers to the process of identifying and lo-
cating sharp discontinuities in an image[2], where
the purpose of edge detection in general is to signifi-
cantly reduce the amount of data in an image, while
preserving the structural properties to be used for
further image processing[2], see Figure 1.

To detect the edge of image we need to apply
specific computation on each pixel in the image,
and that process will take a large time to do it es-
pecially for large size images, so in this paper we
propose a parallel algorithm for edge detection, in
order to reduce the computation time of the edge

1

detection operation.So in this paper we propose a
new approach to parallelize the sobel edge detec-
tion algorithm depending on domain and function
decomposition and decentralization architecture of
processors.
This paper is organized as follows: Section 2

gives a brief introduction on the Sobel edge de-
tection algorithm, while section 3 gives introduc-
tion of parallel computing using massage passing
interface and describes the architecture of the new
algorithm, section 4 presents the related works of
parallelization the sobel edge detection algorithm,
section 5 describes the parallel design, section 6
discusses the experiment and results and finally,
section 7 outlines some conclusions.

2 Sobel Edge Detection

In this paper we choose the sobel edge detection
algorithm, because it is the most common, and that
refers to two reasons: it is less sensitivity to noise,
and because it is the differential of two rows or two
columns, so the elements of the edge on both sides
has been enhanced, so that the edge seems thick
and bright[4].
The Sobel operator performs a 2-D spatial gra-

dient measurement on an image and so emphasizes
regions of high spatial gradient that correspond to
edges [4]. Typically it is used to find the approxi-
mate absolute gradient magnitude at each point in
an input greyscale image[4].
The operator consists of a pair of 3x3 convolution

masks as shown in Figure 2. One mask is simply
the other rotated by angle 90 [4]. The Gx mask is

Figure 2: sobel convolution masks (kernels)

used to determine the edges in the horizontal di-
rection while the Gy mask is to identify the edges
in the vertical direction [4]. The resulting output

will be calculated from the magnitude of the gradi-
ent that will determine the edges in both directions.
The magnitude of the gradient are calculated using
the formula [4]:

|G| =
√

G2
x +G2

y

Although typically, an approximate magnitude
is computed using[4]:

|G| = |Gx|+ |Gy|

which is much faster to compute.

Based on the above equation, it seem that edge de-
tection is trivial task, but it still adds to the overall
computation time if it were to be operated on big
size images because it involves huge number of it-
erations. Therefore finding means to accelerate the
process can contribute to faster overall image pro-
cessing time.

3 Parallel Computing Using
Massage Passing Interface

A single computer processor can only do one thing
at a time in sequential order. A parallel computer,
which can perform multiple computations at once,
can be used to solve simple problems in a minutes
that normally take hours or days on a single pro-
cessor [3]. The most basic concept behind parallel
computing is the distribution of the workload be-
tween the individual processors that are working
together to perform computations.
There are two approaches to writing parallel pro-
grams, these approaches are [5]:

1. Use of a directives-based data-parallel lan-
guage.

2. Explicit message passing via library calls from
standard programming languages.

In this paper we have used the Message Passing In-
terface (MPI) which is a message passing library in-
terface specification due to the nature of our prob-
lem in order to distribute data between processors

2

and allow for inter processor communication, so
we can work on large size of image without being
restricted by the size of a global shared memory
pool. MPI is designed for high performance com-
puting on parallel machines or cluster of worksta-
tions [6], and it consist of multiple instances of a
serial program that communicate by library calls.
These calls divide into four classes [7]:
1. Calls used to initialize, manage, and finally

terminate communications.
2. Calls used to communicate between pairs of

processors.
3. Calls that perform communications operations

among groups of processors.
4. Calls used to create data types.

Also, in this paper we depended on decentraliza-
tion architecture for processors to achieve message
passing approach, where the one of processor work
as master and others as workers, but also there are
a communications between the workers this com-
munication is based on message passing approach,
see Figure 3

Figure 3: Decentralization architecture

4 Related Works

There is limited amount of efforts have been di-
rected towards the parallelizing the edge detection
of images using MPI approach, in order to achieve
this process with minimum computational time us-
ing different architectures, techniques and meth-
ods.

In their work, Haron et al. (2009)[6] designed
a parallel Sobel edge detection algorithm using
Foster’s methodology; the methodology consists of
four steps: partitioning, communication, agglomer-
ation and mapping. In the partitioning stage, they
have chosen data decomposition approach where
they break the image into smaller pieces and each
piece is associated with one task, they have iden-
tified that only local communication exists in this
parallel algorithm, since the task requires values
from only its neighboring pixels. In Mapping they
assigned tasks to each processor, they have as-
signed each agglomerated task to each processor
[6]. They reached to good results compared to se-
quential algorithm.
In other hand, Abdul Khalid, et al. (2011) [8],

presented the parallel multicore Sobel edge algo-
rithm which parallelizes the traditional sequential
Sobel edge detection algorithm on a parallel mul-
ticore platform. They used the MPI where the al-
gorithm is implemented on various thread [8], and
they depended on data decomposition, and they
reached to good method not only for image pro-
cessing by depending on threads.

5 Design and Implementation

In this section we describes the design and imple-
mentation phases for the methodology used in this
paper.

5.1 Decomposition

The first step in designing a parallel program is to
break the problem into discrete ”chunks” of work
that can be distributed to multiple tasks [9]. There
are two options on how partitioning can be done;
domain or functional decomposition. The main
goal of decomposition is to identify as many prim-
itive tasks as possible because it determines the
upper bound on the parallelism we can exploit. In
domain decomposition the data associated with a
problem is decomposed, and each parallel task then
works on a portion of the data. Functional decom-
position focus on the computation that is to be

3

performed rather than on the data manipulated by
the computation, the problem is decomposed ac-
cording to the work that must be done, each task
then performs a portion of the overall work [9]. In
this paper we have used these two options; Domain
and functional decomposition.

• Domain Decomposition: Due to the nature
of edge detection mechanism where the com-
putation is carried row by row in an image,
we have chosen the domain decomposition by
breaking the image into smaller element and
calculating the gradient for each pixel in the el-
ement, so the domain decomposition consider
the main decomposition in this problem. The
element in this paper are rows of images, each
level 1 workers and it’s corresponding level 2
workers work on different rows of image, see
Figure 4. This decomposition in this paper is
done by dividing the height of the image on
the number of level 1 workers, and the master
works remaining rows if there exists.

Figure 4: Example of decomposition for the image where
the number of worker processors equals 8

For example, if we have 4 worker processor (2
workers are level 1, and 2 workers are level
2), each level 1 workers will work on different
rows, where each level 1 worker and it’s cor-
responding level 2 worker work on the same
rows. and for each rows the level1 worker and
it’s corresponding level 2 worker will compute
the gradient of image for both directions x and
y by applying the previous kernels for each
pixel in each rows.

• Function Decomposition: In edge detec-
tion algorithm, for each pixel we find the gra-
dient for each direction x and y. In this paper

we have decomposed the compute of gradient
into two processor each processor compute the
gradient in one direction. For example in Fig-
ure 4 if we have 8 processor, so processor 1
(level 1) and 5 (level 2) will work on the same
rows (rows 1) but processor 1 will compute the
gradient on x direction by applying the kernel
1 (Figure 4) for each pixel, and processor 2 will
compute the gradient on y direction by apply-
ing the kernel 2 (Figure 4) for each pixel. Also
processors 2 and 6, 3 and 7, 4 and 8 will work
as same as processor 1 and 5.

5.2 Communication

There are two types of communication that exist in
any parallel algorithms: local and global [6]. Lo-
cal communication exists when a processor requires
values from only a small number of other processor
in order to perform a computation, while global
communication occurs when a processor requires
values from significant number of other processors
[6]. In our method we have a local communication
because our architecture is decentralized, and we
don’t need a global communication.

5.3 Synchronization

There are three types of synchronization: First is
the barrier which is a basic mechanism for synchro-
nizing processes, inserted at the point in each pro-
cess where it must wait, and all processes can con-
tinue from this point when all the processes have
reached it [10], another type of synchronization is
deadlock which occur if both processes perform
the send, using synchronous routines first. This
is because neither will return; they will wait for
matching receives that are never reached [10]. The
third type of synchronization is the synchronization
of communication operations, which involves the
tasks executing a communication operations [10].
In this paper we have a synchronization of commu-
nication depending only on send and receive mes-
sage between the processor. In this paper the syn-
chronization for Sobel edge detection was done as
follow:

4

1. The master send to each worker the size of
segment they will work on it.

2. The master send to each worker the width of
image.

3. The master sends to level 1 worker the lower
bound for different rows from the image.

4. The workers received all previous data from
master.

5. Each level 1 worker send his data to corre-
sponding level 2 worker to work on different
kernel.

6. The level 2 workers after applying the second
kernel on segment of image, it returned the
segment of image after computation to it’s cor-
responding kernel 1.

7. The level 1 worker receive the data from it’s
corresponding level 2 worker after applying the
kernel 2 on the segment.

8. The level 1 worker send the segment after find-
ing the magnitude to the master.

9. The master receive previous segments from
each level 1 worker, and end the edge detection
algorithm.

5.4 Load Balancing

Load balancing refers to the practice of distribut-
ing work among processor so that all tasks are
kept busy all of the time, in order to minimize the
idle time of processor [11]. load balancing algo-
rithms can be categorized as static or dynamic [11].
The static load balancing algorithms distribute the
tasks to processing elements at compile time, while
dynamic algorithms bind tasks to processing ele-
ments at run time [11]. In this paper we used
the static load balancing, and we achieve it at two
stages:

• First stage was done by equally partition the
work between processor because we have the
same power of processor, where each worker
processor work on the same size of segment
from image, and also the master work on some
exceed rows of images to find the gradient.

• Second stage was done by equally distribution
the segment after finding the gradient between
the level1 workers to find the magnitude in
order to distribute the work of the master.

5.5 Serial and Parallel Sobel Edge
Detection Algorithm

The serial algorithm for the sobel edge detection is
illustrated in Algorithm 1.

Algorithm 1 Serial Sobel edge detection algo-
rithm

Read the grayscale image into array
Apply convolution kernel 1 on each pixel of image
by multiplication, the output is Gx.
Apply convolution kernel 1 on each pixel of image
by multiplication, the output is Gy.
Find the absolute value for each pixel in Gx.
Find the absolute value for each pixel in Gy.
Sum the Gx and Gy matrix, the output is M.
Read suitable threshold (t) from user.
for all pixel(i)inM do
if M(i) > t then

newImage(i) = 1
else

newImage(i) = 0
end if

end for
Write newImage.

The Parallel algorithm for the sobel edge detec-
tion is illustrated in Algorithm 2, depending on
master and workers processors.

5

Algorithm 2 Parallel Sobel edge detection algo-
rithm

Initialize MPI
Finding the number of processor will work on different
data, noprocessor = (no of processor)/2 +1
Load the image, for all processors less than noprocessor.
if master then

Finding the size of remain rows of image.
F inding the size of segment for each worker
processor, by dividing the height of image on
the number of salve processor after substract
the remain rows.
F inding the lower bound of segment for each
worker processor.
Sending the lower bound of segment and size
of segment for each worker processor.
if remainrows > 0 then

Applying kernel 1 on remain rows.
Applying kernel 2 on remain rows.
F inding the magnitude for segment, and
storing it in edge matrix at it′s lower
bound index

end if
For each worker less than noprocessor, receiving
the segment after F inding the magnitude and the
size of segment and storing it as following :
storing receiving data in edge matrix at the
lower bound index of sending processor.
Writing the edge matrix as output.

else
Receiving the size of each segment, and the
lower bound of the segment from the master.

if rank < noprocessor then
Reading the data of segment depending on
the lower bound received frommaster
Sending the data(segment) to the myrank +
(noprocessor − 1)
Applying kernel 1 on the segment
Recieving the segment after applying the
kerne2 frommyrank + (noprocessor − 1)
Finding the magnitude of segment.
Sending the segment after finding the
magnitude to master

else
Receving the data(segment) from the
(noprocessor − 1)−myrank.
Applying kernel 2 on the segment
Sending the segment after applying the
kernel to (noprocessor − 1)−myrank.

end if
Finalize the MPI

end if

5.6 Performance Evaluation
Method

The evaluation of the parallel execution perfor-
mance is measured by speedup, performance im-
provement and efficiency with reference of time
taken for both sequential and parallel processing
[6].

• Speedup is a measure that captures the rela-
tive benefit of solving a problem in parallel. It
is defined as the ratio of the time taken to solve
a problem on a single processing element to the
time required to solve the same problem on a
parallel computer with P identical processing
elements [7], the equation of speedup is:

speedup =
Sequential(time)

Parallel(time)

• The performance improvement measures the
relative improvement that the parallel algo-
rithm has over the sequential. This perfor-
mance is measured as following formula [8]:

Improvement =
Sequential(time)− Parallel(time)

Sequential(time)

• Efficiency of a parallel program is a measure
of processor utilization and is calculated using
the following formula [8]:

Efficiency =
Sequential(time)

no.processor × Parallel(time)

6 Experiment and Results

6.1 Experimental Setup

The experiment was implemented on one machine.
This machine have 2 processors (Core 2 Due), 2GB
RAM, and 2.1 GHz processor’s speed. The soft-
ware required to perform the parallel process are
Ubuntu 11.10, lam-MPI library and CPU monitor-
ing software for performance measure.
The experiment was done on 306x350 pixels,

512x512 pixels, 2560x1440 pixels, 4752x3168 pix-
els images.

6

6.2 Results

The Parallel results are discussed based on
speedup, performance improvements and efficiency
that mentioned before. Figure 5 shows the exe-
cution time of both serial algorithm and parallel
algorithm for different size of images with different
number of processors.

(a) 306x350 pixels image (b) 512x512 pixels image

(c) 2560x1440 pixels image (d) 4752x3168 pixels image

Figure 5: Execution time for 4 different images size using
different number of processors

As shown in Figure 5 the total execution time for
all images in the figure is reduced significantly at
3 processors. In Figure 5, in (a) until 5 processors
the parallel algorithm is less than serial algorithm,
but in (b) the parallel algorithm is suitable than
serial until 7 processors, also in (c) the parallel al-
gorithm is suitable than serial until 29 processors,
and in (d)the parallel algorithm is suitable than se-
rial until 29 processors. This difference in results
returns to two reasons: the size of the image and
the actual number of processors on the machine.
Figure 6 shows the speedup results against num-

ber of processors for 4 image sizes.
In Figure 6, all images gain good speedups us-

ing 3 number of processors, that because of the
experiment is done using dual core machine (ac-

Figure 6: speedup for 4 different images size using different
number of processors

tual number of processors equals 2). However, all
reached saturation point at different processors re-
lated to the size of image, and is predicted to have
less difference in speedup as number of processors
increases.

Figure 7 shows the performance improvement of
parallel algorithm for different size of images with
different number of processors. In this Figure we
can see that the best improvement is done at 3
number of processors for all image sizes.

Figure 7: Performance improvement for 4 different images
size using different number of processors

Figure 8 shows the efficiency of parallel algo-

7

rithm for different size of images with different
number of processors. In this figure we can see that
the efficiency of the parallel algorithm decreases as
the number of processors increases for all images
sizes.

Figure 8: Efficiency for 4 different images size using dif-
ferent number of processors

7 Conclusion

In this paper we have presented a design of paral-
lel edge detection algorithm, this design was based
on domain and function decomposition and decen-
tralization architecture. The results shows that
the parallel algorithm improves the serial Sobel
edge detection algorithm. Our design gives a good
speedup for different image sizes until specific num-
ber of processor, that related to the environment
of the experiment and the communication time for
the proposed architecture, so we hope in the future
to apply this new algorithm on a Beowulf cluster
to improve our results, and improve the results for
the large images.

References

[1] R. C. Gonzalez and R. E. Woods, Digital Image
Processing. Pearson Prentice Hall, third ed., 2008.

[2] R. Maini and H. Aggarwal, “Study and compar-
ison of various image edge detection techniques,”
International Journal of Image Processing, 2009.

[3] A. L. Jackson, “A parallel algorithm for fast edge
detection on the graphics processing unit,” Honor
thesis,Washington and Lee University, 2009.

[4] W. Gao, L. Yang, X. Zhang, and H. Liu, “An im-
proved sobel edge detection,” Computer Science
and Information Technology (ICCSIT),3rd IEEE
International Conference, 2010.

[5] P. T. Group, Introduction to MPI. NCSA Ac-
cess, Board of Trustees of the University of Illinois,
third ed., 2001.

[6] N. Haron, R. Amir, I. A. Aziz, L. T. Jung, and
S. R. Shukri, “Parallelization of edge detection
algorithm using mpi on beowulf cluster,” IEEE
International Conference on Systems, Computing
Sciences and Software Engineering, 2009.

[7] A. Grama, A. Gupta, G. Karypis, and V. Kumar,
Introduction to Parallel Computing. Addison Wes-
ley, second ed., 2003.

[8] N. E. A. KHALID, S. A. AHMAD, N. M. NOOR,
A. FIRDAUS, A. FADZIL, and M. N. TAIB,
“Analysis of parallel multicore performance on
sobel edge detector,” Proceedings of the 15th
WSEAS international conference on Computers,
2011.

[9] A. Vajda, “Programming many-core chip,”
Springer, 2011.

[10] I. Foster, Designing and Building Parallel Pro-
grams. Addison Wesley, 1995.

[11] A. Mandal and S. C. Pal, “An empirical study and
analysis of the dynamic load balancing techniques
used in parallel computing system,” Proceedings of
ICCS, 2010.

8

