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Abstract__ Functions of bounded variation are a special class of functions with finite variation over an interval. Throughout this seminar, we study the behavior of these functions and give some important theorems to show the essential properties of function of bounded variation. Next, we introduce Riemann Stieltjes integration which is a generalization of the Riemann integral and show the relation between it and functions of bounded variation.
Keywords-Bounded; Variation; Riemann; Staieltes Integral .
I. INTRODUCTION
A function of  bounded variation is a real-valued function whose total variation is bounded. In this paper we discuss function of bounded variation and total variation definitions, and illustrative theorems to check whether or not the function is of bounded variation. If the function is of bounded variation, we calculate the total variation of it. Then we introduce the Riemann Stieltjes integral and show its properties. This integral is very important in probability and other science branches.

We divide this paper into three topics, which can be summarized as: we begin by giving some fundamental definitions and theorems needed for our topic. Next we define function of bounded variation and give some important theorems, mainly "Jordan Decomposition Theorem", which shows the close relation between the function of bounded variation and monotonic functions, and that the functions of bounded variation are generated by monotonic functions. Finally, we  define Riemann Stieltjes integral which is a generalization of the Riemann integral. Some properties of this integral are discussed, we show the relation between function of bounded variation and Riemann Stieltjes integral. At last we introduce some application of the Riemann Stieltjes integral.












II. PRELIMINERES
Before we define functions of bounded variation, we must lay some fundamental definitions and theorems in order to understand this class of functions.
1. Partition: If is close and bounded interval, a set of points = {, satisfying the inequalities a=<<…<<=b is called partition of 
We denote  to be the set of all partitions of  
.

2. Refinement of  : A partition  of  is said to be finer than (or a refinement of  ) if  .

3.  Let : ]  be a function. Then  is said to be
i. Increasing on  if for every , 
.
ii. Decreasing on  [a, b] if for every , 
x < y(x)(y).
iii. Monotone if   is either increasing or decreasing on  .

4.  Bounded Function: A  functionif there exists a constant   such that for all
 is said to be bounded  on  .	

5. Uniformly Continuous Function: Let  and let .We say that  is uniformly continuous on  if for each there exist a such that if
are any numbers satisfying  
	



6. Mean Value Theorem: Suppose that  is continuous on a closed interval , and that  has a derivative in the open interval .Then there exist at least one point in  such that 


7. The Norm of a Partition  is defined to be the length of the largest subinterval of and it is denoted by  , that is, if  ={} is partition of  then 


8.  Let  be a nonempty subset of   :
i. The set  is said to be bounded above if there exist a number such that s for all 
. Each such number  is called an upper bound of .
ii. The set  is said to be bounded below if there exist a number such that  for all 
. Each such number is called a lower bound of .
iii. A set  is said to be bounded if it is both bounded above and below. 

9. Supremum: If a set   is bounded above, then a number is said to be a supremum of  if it satisfies the conditions:
i. is an upper bound of  .
ii. If  is any upper bound of , then.

10. Infimum: If a set is bounded below, then a number is said to be an infimum of if it satisfies the conditions:
i. is a lower bound of.
ii. ifis any lower bound of , then.

11. Additive Property Theorem: Given a nonempty subsets  and of  let denote the set
C
If each of  and  has a supremum, then  has
a supremum and 



III. FUNCTIONS OF BOUNDED VARIATION: DEFINITIONS AND THEOREMS
Function of bounded variation is one of the basic concepts in mathematical analysis, which serves mathematics pure and applied. In this brief chapter we discuss functions of bounded variation and total variation definitions, and illustrative theorems to see whether or not the function is of bounded variation, and if the function is of bounded variation, we calculate the total variation of it.

1. Definition of Function of  Bounded Variation:
Definition 1: Let  be defined on a closed bounded interval, if  is a partition of. Write
(7)
If there exist a positive number such that
 
where is the set of all partitions of, then  is said to be of bounded variation on .

Example 1:
Let   be a function defined on , and let  be a partition of  then the variation is given as:
 .
Since  is increasing on  we have, 
                                        

                                 .
We conclude that, for any partition of ,
 .  

 
2. Basic Theorems:
Theorem 1: If  is monotonic on, then  is of bounded variation on.
Proof:
Let  be increasing on. Then for every partition  of  we have,
 

Hence,  is of bounded variation on.
In the same way, we can show that decreasing functions are of bounded variation on.

Theorem 2: If  is continues on  and differentiable on, such that  is bounded, then  is of bounded variation on.
Proof: 
Since is bounded on an open interval,  such that 
for all  in 
Let  be any partition of, by applying the Mean Value Theorem to  on, such that,
= 
and take the summation of  both sides, we get:
= 
                                              ≤ 
                                              = 
Hence,  is of bounded variation on.
Remark:
[image: G:\graphsa.png]If is bounded, then  dose not necessary be of bounded variation. For example, the function   is monotonic, and so  is of bounded variation on. However, is not bounded, since
as.	
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Figure 1. The graph of  .
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Figure 2.The graph of .


Theorem 3: If is of bounded variation on, then  is bounded on.
Proof:
Let , consider the partition  of  , such that 
Since  is of bounded variation on,
 
so,

also,
 ≤
which implies,
 ≤ 
Hence,
(10)
So,  is bounded. 
  
Example 2:
Show that:

is not of bounded variation on , although is bounded and continuous.




Figure3. 
Figure 3. The graph of
Solution:
Clearly, so  is bounded.

implies that  is right continues at, so  is continues on .
Let us take the partition, the subinterval is . If  is even then  is odd, 


so,

Similarly, if  is odd and  is even,

 
  
 
 
but, is divergent as  .
Hence,  is not of bounded variation on .

Note that:
If we take the same example on any closed interval does not contain , say  is continuous,  exist and bounded, then   is of boundedvariation by Theorem 2.

Remark:
A function of bounded variation is not necessarily continuous. For example: Let  be the greatest integer function less or equal than. Then  is of  bounded variation on. That is because  is   increasing, but it is discontinuous.




Example 3:
  .
Determine whether or not  is of bounded variation on 
Solution:
is continuous on  , on  .Therefore.
 exists and bounded on , so  is of bounded variation on  by Theorem 2.


3. Total Variation:
Definition 2: Let  be of bounded variation on, and let  denote the sum  corresponding to the  of. The number defined as follows:
(11)
is called the total variation of  on .

Note:
A function : is constant if and only if  is of bounded variation and  .

Example 4: 
Let   be a function defined on  , and let  be a partition of , then
 
so,
 .

Theorem 4: Let  and be two functions of bounded variation on. Then their sum, difference, and product are functions of bounded variation on, and we have,
i.  .                                      (12)
ii. .                                    (13)
where
 ,
.
Proof:
i. Let , and let  be any partition of, we have,

                   
                   
         so,
 .
        Since are each of bounded variation,
        such that,
  and     
       
        so,
 
        Hence,  is of bounded variation.
        Now,
           
         hence,

        In similar manner we can prove the case

ii. Let  , and let  be any partition of, then


 
         
 
         
         
         so,
  
        sinceand  are each of bounded variation we have,
 
        we conclude that,   is of bounded variation on .
        Now,
 
 
        Hence,
 

Theorem 5: Let  be function of bounded variation on  and assume that  is bounded away from , that is suppose a positive number  such that,
.Then   is also of bounded variation on , and.
Proof:
 
We conclude that, is of bounded variation on , and.

Corollary:
Let  and  be functions of bounded variation on  and let be a constant, then
· is of bounded variation on.
· If   is of bounded variation on , then   is of bounded variation on 




Theorem 6: Let  be function of bounded variation on  and assume that . Then  is of bounded variation on and on, and

Proof:
Let  be a partition of, and let  be a partition of then,  is a partition of.
If denotes the sum  corresponding to any partition. We can write,
 
so from (16) we have,
 
i.e.
 
which means that  is of bounded variation on .
and
 
i.e.
 
which means  is of bounded variation on .
From (16) we can also obtain the inequality,
(17)
[image: G:\1-cosx.png]To obtain the reverse inequality, let 
 and let  be the partition obtained by adjoining the point  .
If then we have,

and  hence,
 
The corresponding sums for all these partitions are connected by the relation 
 
Therefore, is an upper bound for every sum , since this cannot be smaller than the least upper bound, we must have,
(18)
From (17) + (18) we complete the prove.

Corollary: 
If   is of bounded variation on , then  is of bounded variation also on any subinterval of.


4. Total Variation as a Function of:
Theorem 7: Let  be of bounded variation on . Let be defined on  as follows:
,. Then
i. is an increasing on .
ii. is an increasing on .


Proof:
i. If   are two points in  such that , then

                                                       
                                                       
Therefore 
Hence,  is an increasing on .
ii. Let  , if . 
If  we have,

               but from the definition of  we have,

               this means that,

               Hence,   is an increasing on .

Example 5:
Let   be a function defined on. Then we have the following:
· is increasing on . 
· is also increasing on. 











Figure 4. The graph of.
[image: G:\1-2cosx.png]
Figure 5.The graph of .

Jordan`s Decomposition Theorem 8: A bounded function is of bounded variation, if and only if, there exist two increasing functions  and  define on  such that 



Proof:
"Only if " part:
Let us define , so  is increasing. Let . Then if,




               

               

               

               .
Therefore, whenever  .Thus,  and  are increasing, and .
"If " part :
 Since every bounded monotone function is of bounded variation and the difference of two such function is also of bounded variation, the 'if' part hold.


IV. THE  RIEMANN – STIELTJES INTEGRAL
In mathematics, the Riemann – Stieltjes integral is a generalization of the Riemann integral, named after Bernhard Riemann and Thomas JoannesStieltjes. The definition of this integral was first published in 1894 by Stieltjes.

1. Definition of Riemann – Stieltjes Integral: 
Definition 3: Let be a partition of  and let  be a point in the subinterval A sum of the form  
 
is called a Riemann- Stieltjes sum of  with respect to . 
The symbol  denotes the difference
, so that
 

Definition 4: The generalized Riemann–Stieltjes integral of   with respect to   is a number  such that for every  , there exists a partition  such that for every partition  finer  than ,
 
for every choice of points  in 
When such a number  exists, it is uniquely determined and is denoted by
or by   
we also say that the Riemann-Stieltjes integral  exists, and we write   "".

Note that:
The functions  and  are referred to as the integrand and the integrator, respectively.

Note that:
In the special case when, we write  instead of  , and  instead of   The integral is then called a Riemann integral and is denoted by or by  

Remark:
The numerical value of   depends only on  ,, , and , and does not depend on the symbol.


2. Monotonically Increasing Integrators  
(Upper and Lower   Riemann– Stieltjes integrals):

Definition 5: Let be a partition of  and  let


Then the upper Stieltjes sum is defined as
and the lower Stieltjes  sum is ofwith respect tofor the partition  .

Note that: 
i. We always have   for all  on [].  If   is increasing on , then    for all   and we can also write   


                            
               that is, for all partition of  , then
 
         ii.  If[k-1 , k], then 
     
             when  is  increasing on, we have
, and      
 

 


These inequalities relate the upper and lower sums to Riemann -Stieltjes sums, and do not necessarily hold when is not an increasing function.
The next theorem shows that, for increasing , the refinement of  the partition increases the lower sums and decreases the upper sums.

Theorem 9: Assume that    is increasing on :
i.  Ifis refinement than, we have  
          
       and
(28)
 ii.  For any two partition  1 and 2, we have 
    

Definition 6: Assume that  is an increasing on. The upper Stieltjes integral of   with respect to   is defined as follows:
}.(30)
The lower Stieltjes integral is similarly defined :
}.(31)
Where  is the set of all possible partition of.

Note that:
We sometimes write (,)  and(,) for the upper and lower integrals. In the special case where , the upper and lower sums are denoted by  and   and are called upper and lower Riemann sums.

Definition 7: A bounded  real–valued function  is Riemann–Stieltjes integral with respect to  on   if  (,) (,).

Example 6:
Let and define on [,] as follows :

show that   is not Riemann–Stieltjes integral with respect to , where is the set of all rational numbers.
Solution :
For every partition  of , we have   and , since every subinterval contains both rational and irrational numbers. Therefore,  and   for all . It follows that we have,  for,
and
Therefore, 
((,
thenis not Riemann–Stieltjes integral.


3. Linear Properties:
Theorem 10: The linear combination of Riemann–Stieltjes integral functions is Riemann–Stieltjes integral, and for any () and if () on , we have 
 
whereand 
Theorem 11: If  () and if  () on, thenon (for any two constant and ) and we have
 

Theorem 12: Assume thatIfand  exist, then  also exist and we  have
 

Definition 8: If, we define
whenever exists. We also define 
The equation in(Theorem 12) can now be written as follows:
 (35)



4. Function of Bounded Variation and Riemann – Stieltjes Integral: 

Bounded variation is important to the existence of Riemann– Stieltjes integral. Jordan's Decomposition Theorem plays an important rule in developing the relation between function of bounded variation and Riemann – Stieltjes integral.

Theorem 13: Suppose that   is continuous on, and that    is of bounded variation on . Then the Riemann–Stieltjes integral    exists.
Proof:
Assume that  is an increasing function. Because  is of bounded variation, we can write as difference of two increasing functions. i.e (Jordan's Decomposition Theorem), we can write 
 
Let  be a partition of. Then 
}
it is enough to show 
},
to prove the Riemann–Stieltjes integral exists.
Now, if    is constant on then  , thus  as do the upper and lower sums.
If  is not constant, given, since  is continuous on, we conclude that  is uniform continuous.Which implies there   such that if  , then


where,

Therefore, if

 
 
 
 
 
Hence,

Thus,

so the Riemann–Stieltjes integral of   with respect to   exists.
If   is decreasing function prove in a similar way.


5. Riemann- Stieltjes Integral in Probability Theory:
In probability  theory  many concepts are defined using Riemann–Stieltjes integral such that expected  value. Here we will define the expected  value for a random variable  .
Definition 9:The sample space is the collection of all possible outcomes that might be observed for  random experiment. This set is usually denoted by . 

Definition 10 : A random variable  is a real valued function on a sample space , that assigns to each elementreal number  .

 Definition 11: The range (or space ) of , say   is the set of all possible values  of .

 Definition 12 : Let be a random variable  with range . The cumulative distribution function of the random variable  , is defined for all real numbers 
by

whereis a  probability function .
Theorem 14:  Let  be a random variable with cumulative distribution function  and range  ,then
i. 
ii. then


 Definition 13  : Let be a random variable  with range . The expectation (or expected  value) of  , denoted by  is defined by 
 
Where  is continuous  random variable.

Now since  bounded and increasing function then  is Riemann- Stieltjes Integral. So we define  using Riemann–Stieltjes integral definition. 

Example7:
Let X be uniform distribution on ,  , then 
 
                                         
                                            
                                            .                          (38)
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