
Intelligent Traffic with Automatic Violation System

[ITWAVs]
Location Determination Algorithm

Dr.Murad Abusbaih, Khalid I. Baradia, Abdullah Z. Ja’abary

Dept. of electrical engineering

Palestine Polytechnic University

Hebron-Palestine, May 2013
Murads@ppu.edu

Abstract—In order to determine the speed limit of the

street where the car located, the system must match the

vehicle location i.e. the current GPS reading with the pre-

stored value in database. In this system, we will develop a

geometrical algorithm, which will be used to approximate

the current GPS data to the closest street.

Index Terms—Speed limit, GPS, database.

I. INTRODUCTION

The goal of this algorithm is to identify the route

taken by a traveler equipped with a GPS data logger.

 Assuming that the traveler is moving along a

transportation network, we can restrict ourselves to a

network representation of the spatial environment.

The network is coded as a set of nodes connected by

directional links. A path is a set of connected links.

 The map-matching problem is to find the best

estimated of the path that is the best estimation of the

route that was actually taken by the user. There are

two sources of errors. First, the GPS data loggers have

their own limitations depending on the environment

(e.g. canyon streets, tree canopies, etc.) and their

accuracy. Second, the coded network (database)

which approximates the physical world.

Most of the existing map-matching algorithms [1], [2],

[3], are more focusing on the accuracy than the

computational speed of the algorithms. Therefore, our

concern is slightly different from the existing

literature.

First, we assume in this algorithm that the only

source of data concerning the traveler is a stream of

2D coordinates collected by a GPS logger embarked

in a car. In particular, we do not use a DR device and

we will not use information about the heading nor the

speed of the vehicle.

Second, the measurement of the overall error as

the distance between the GPS points and the coded

network is not transferable from one study to another,

since it highly depends on the resolution of the coded

network. Therefore, the comparison of the algorithms

can only be performed on the same data sets. Ideally,

the performance of the algorithms should be measured

as the ratio of routes that were correctly matched,

which in turn would require a tedious manual

checking (e.g. using street names).

For these reasons, we will focus only on the

operational performance of the algorithms, that is how

much faster that real-time they can process large

volumes of data with reasonable matching errors (i.e.

the routes are checked visually on a map). Note that

most embarked GPS navigation systems have map-

matching abilities.

To summarize, we have 1) a standard network

representation of the transportation system, directed

links and “polygons” describing their curvature as will

be explained later, and 2) a stream of GPS coordinates

recorded for every time. The problem is to find the

path in the network that is the closest to the GPS

points and in minimum computations.

II. PROPOSED ALGORITHM

Let G (V, E) be the directed graph describing the

road network. V is the set of vertices or nodes and E is

the set of edges or links. Let Qi, Qi’ be the set of

points given by the GPS data stream, set of corrected

GPS points respectively, I = 1...T, Each GPS point

consists of a pair of coordinates (xi, yi).

In order to minimize the GPS reading error, a

small shift perpendicular to the link direction will be

introduced, according to the end driving side of the

studied area. Therefore, in the computation of the

distance, an oriented link AB is replaced by A’B’

where A’ = A +∆, and B’ = B +∆, ∆ is chosen to

reflect the average physical distance from each edge

of the road. In this system, ∆ = 5m in each direction,

since the average GPS error is about 10m.

The most important thing that must be searched

is how to satisfy the algorithm objectives with the

least computational complexity, and minimum time.

So, the Algorithm initialized by distributing the

working region into Ni polygons, each polygon is

restricted by the lowest and highest GPS points.

 Inside each polygon, distribute the streets into

Sj internal polygons, each one is restricted by the

lowest first and highest end GPS points, whereas a

diagonal link can be connected between this two

points.

Technically, this algorithm sorts each group of

streets into one polygon, which help in decreasing the

searching process inside the database. In other words,

the searching process will be divided into two stages:

first, inside the N polygons to determine in what

region the vehicle site (Ni), and the second is the

searching process inside the Nth polygon, to search

about the Sj street.

III. BUILDING MOBILE DATABASE

As mentioned before, this algorithm depends on

determining the vehicle location with minimum

possible time, so lowest computation process must

apply. Therefore, this concept must apply when

building streets database, by applying the following

steps:

1. Distribute the intended region into polygons

as mentioned before, each with the lowest and highest

GPS points. For example, in the model applied for this

system, we consider that “West-Bank” is the working

region, and divided it into polygons, one of these

polygons is “Hebron” polygon, with GPS points:

[31°27'56.10"N , 35° 4'52.45"E] ~ [31°36'34.10"N ,

35° 7'11.61"E], as shown below.

2. Inside Each polygon, arise streets polygons,

each one determining by two diagonal GPS points as

shown in the following figure, and for each street

Expand them by (5m) on each direction (East, West,

South, North), in order to minimize the probability of

error, as shown in the following figure.

Figure 1:Distance between a point and a road

segment

Figure 2: Technical algorithm description

Figure 3: Hebron Polygon

Figure 4: Street polygons samples

Figure 5: Expand Street by 5m in each direction

3. From the principle of GPS coordination, the

GPS point value will increase or decrease as the

direction of moving. Benefit from this principle;

expand the diagonal line from the start GPS-stored

data, to the end on the opposite side, as shown in

figure 4.20, in order to contain the max. GPS

coordinates in each sub-polygon

Figure 6: Expanded street with start- end GPS points

moreover, the max GPS error point of the car

In our model, a part of sub-polygon appears in

the following figure:

4. In order to make a comparison, choose

latitude coordinates arranged from [Max latitude -Min

latitude] for each diagonal sub-polygon, where Max.

and Min. latitude represent the start and end GPS of

each sub-polygon, that will be stored in the database

Then the system compares the latitude coordinate of

vehicle location with these latitudes range stored in

database.

 5. The problem here, that there will be many

streets have the same latitude coordinates .To solve

this problem: the system will compare the vehicle

GPS location (latitude and longitude) with the street

range latitude and longitude, never to get two street

having the same range of latitude and longitude.

6. Built in database of each main or sub polygon

will be presented by 4 points (two for latitude and the

same for longitude).

Table 1: Sample of streets database

7. GPS coordinates form conversion from

(degrees) to (XY) form will be used here, in order to

simplify the comparing process, using the conversion

equations.

IV. BREAKING ROUTES INTO PIECES

When the streets are too long, or do not have a

linear shape, these streets will be divided into pieces,

each one has 4 points.

Query will be used to determine the car location

by holding the current GPS data, and then compare it

with the database.

The following flow-charts show the Map-

Matching algorithm:

SPEED

LIMIT

ID END

POINT

(Longitude)

FISRST

POINT

(Longitude)

END

POINT

(Latitude)

FIRST

POINT

(Latitude)

50 S1 205053 205055 222230 222235

60 S2 205052 205002 222223 222225

Figure 7: Hebron Sub-polygon

RESULTS

After perform three tests using this algorithm, we have the

following results:

1. Decrease the GPS accuracy from 15m error in average

to lower than 5m.

2. Localize the vehicles in any street inside or outside the

Palestinian cities.

3. Enhance the relation between the vehicle speed and

GPS accuracy, as the following results:

Table 1: Tests results of the algorithm

Test # Average Vehicle speed(kmph) GPS error (m)

Test 1 20 1.5

Test 2 50 3.5

Test 3 70 5-7

CONCLUSION

After perform the location determination algorithm in the

ITWAVs project, we conclude that the GPS error solved

depends in the previous criteria to minimize the previous

algorithm.

REFERENCES

[1] M. Ochieng, "MAP-MATCHING IN COMPLEX URBAN

ROAD NETWORKS," Centre for Transport Studies,

Department of Civil and Environmental Engineering,

London, 2006.

Create Main polygons Ni

Create Sub-polygons Sj

Shape linear

 AND not too long

piece ?

Convert GPS coordinates

form

Store street GPS

coordinates into DB

End

Divide path into linear pieces

Start

NO

YES

Convert GPS to XY form

GPS inside any

range ?

End

Wait

Start

NO

YES

Get GPS reading

DB
Compare Current GPS

reading with Stored DB

System off ?

YES

NO

Out Speed limit

Figure 8: Breaking Route into pieces flowchart

Figure 9: Map-Matching algorithm flowchart

[2] J. Marchal, "Efficient map-matching of large GPS data sets –

Tests on a speed monitoring experiment in Zurich," Institut for

 Verkehrsplanung, 2004.

[3] L. Friese, "Updating the Spatial Alignment Attributes of Digital

Maps Using GPS Points," Princeton University, May, 2005.

Figure 10: Map-Matching algorithm flowchart

